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Abstract

Let G be a graph on n vertices with degree sequence § = d; < dy < ... < d,
and let ¢ be the circumference - the length of a longest cycle in G. In 1952, Dirac
proved: (i) every graph with d; > % is hamiltonian; (ii) in every 2-connected graph,
¢ > min{n,2d;}. In this paper we present the following two Dirac-type extensions:
(iii) every graph with ds > 4 is hamiltonian; (iv) in every 2-connected graph, ¢ >
min{n,2ds}. The results are sharp.
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1. Introduction

We consider only finite undirected graphs with neither loops nor multiple edges. A good
reference for any undefined terms is [2].

The set of vertices of a graph G is denoted by V(G) and the set of edges by E(G). Let n be
the order (the number of vertices) of G, ¢ the order of a longest cycle (called circumference)
in G and p the order of a longest path. We use N(v) to denote the set of all neighbors of a
vertex v and d(v) = |N(v)| to denote the degree of vertex v. The minimum degree in G is
denoted by 0. Let dy,ds, ..., d, be the degree sequence in G with § =d; < dy < ... < d,.

A path (simple path) of order m is a sequence of distinct vertices vy, ..., v,,, denoted by
V103...Upy, such that v;_jv; is an edge for all 2 < ¢ < m. Similarly. a cycle of order m is a
sequence of distinct vertices vy, ..., v,,, denoted by viv,...v,,v1, such that v;_;v; and v,,v; are
edges for all 2 <7 < m. In particular, for m = 2, v;v,v; is a cycle of order 2; and for m = 1,
v1vy is a cycle of order 1. So, by the definition, every vertex (edge) can be considered as a
cycle of order 1 (2, respectively). A graph G is hamiltonian if G contains a Hamilton cycle,
that is a simple spanning cycle.

We write a cycle (a path) @ with a given orientation by 5 The reverse sequence of
vertices of 5 is denoted by 5 For z € V(Q), we denote the successor and the predecessor
of x on 5 (if such vertices exist) by ™ and x~, respectively. For U C V(Q), we denote
Ut ={utlue U} and U" = {u"|u € U}. We use P = x?y to denote a path with end
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vertices x and y in the direction from x to y. We say that vertex z; precedes vertex z; on a
path 5 if z1, 29 occur on 5 in this order, and indicate this relationship by z; < z,.

In 1952, Dirac [3] gave the first sufficient condition for a graph to be hamiltonian and
the first nontrivial lower bound for the circumference in terms of minimum degree d; = ¢.
Theorem A: [3]. Every graph with dy > % is hamiltonian.

Theorem B: [3]. In every 2-connected graph, ¢ > min{n,2d, }.
A great number of generalizations and improvements of Theorems A and B are known under
various conditions.

In this paper we present the following two Dirac-type extensions of Theorems A and B
in terms of d; (for appropriate 7) instead of d;.

Theorem 1: Every graph with ds > 5 is hamiltonian.

Theorem 2: In every 2-connected graph, ¢ > min{n, 2ds}.

It is not hard to see that if G is a graph with ds > % or G'is a 2-connected graph, then
J > 2.

To see that Theorem 1 and Theorem 2 are sharp, let G = K5 + Ksy1. Since ds = 6
and ¢ = 20 < n, we conclude that the bound ds > % in Theorem 1 cannot be replaced by
ds > =1

Let2G = K5 + (0K; U K3). Clearly, ds = § and ds,; = § + 1. Observing also that
¢ =20 +1 < n, we conclude that the bound d; > 4 in Theorem 1 cannot be replaced by
dsi1 2> 5. o

As for Theorem 2, the graph example G = Ks 4+ K;s.1 shows that the bound ¢ >
min{n, 2ds} in Theorem 2 cannot be replaced by ¢ > min{n,2ds + 1}. Finally, the graph
example G = K+ (0 K7 U K5) shows that the bound ¢ > min{n, 2ds} cannot be replaced by
¢ > min{n, 2ds,1}. Thus, Theorem 1 and Theorem 2 are sharp in all respects.

Let P = v105...v, be a longest path in G. Clearly, N(v;) U N(v,) C V(P). A vine of
length m on P is a set

—

of internally-disjoint paths such that

(b) v = w1 < wy <21 S W3 <22 JWy < oo. R Wy < Zy1 < Zy = U, 00 P
Lemma 1: [3]. If G is 2-connected, then there is at least one vine on P.

We need also the following lemma.
Lemma 2: [1]. Let G be a 2-connected graph on n vertices. If v1vs...v, is a longest path of
G, then there ezists a cycle of length at least min{d(vy) + d(v,), n}.

2. Proofs

Proof of Theorem 1. Assume first that GG is not connected and let H; and Hy be two
connected components of G. Clearly, |V(H;)| >0+ 1 (i = 1,2) and

max{d(v) :v € V(H;)} > ds;1 (i=1,2).

Hence
2ds < 2dsy1 < max{d(v) :v € V(H;)} + max{d(v) : v € V(H3)}
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<|V(H)|+|V(H)|—2<n-2,

contradicting the hypothesis 2ds > n. So, we can assume that G is connected. Let
—

P = vjvs...v, be a longest path in G. Clearly, N(v;) U N(v,) C V(P). Assume that

(al) P is chosen so that d(v;) is maximum.

—
Let x1, xo, ..., z; be the elements of N(v;) occurring on P in a consecutive order, where

t =d(vy) > 0. Observe that for each i € {2,...,t},
— —
x; Puiz; Pop
is a longest path in G. By (al),
dvy) > d(z;) (i=1,2,..,1). (1)

Assume first that z; = v, that is ¢ > p. If ¢ > p+1, then the cycle of order at least p+1
contains a path of order at least p + 1, a contradiction. Hence, ¢ = p. Put C = V1V2...Up01 -
If p = n, then C' is a Hamilton cycle in G. Otherwise, since G is connected, uyuy € E(G) for
some u; € V(C) and uy € V(C). Then uf?ulm is a path of order p + 1, a contradiction.

Now assume that x; # v, that is z; < v,. Further, we can assume that

a2) P is chosen so that d(v,) is maximum, subject to (al).
p

«—
Let y1,92, ...,y be the elements of N(v,) occurring on P in a consecutive order. By

(a2),
d(vp) > d(y) (i=1,2,.,f). (2)
By (1) and (2),
d(v1) > max{d(zy),d(z5),...,d(x; )}
Z maX{dl,dg, ...,dt} = dt = dd(m) Z d(g.

and
d(v,) > max{d(yy),d(y3 ), ..., d(y} }
> max{dl, dg, ceey df} = df = dd(vp) > d(g,

implying that
d(v1) + d(vy) > 2ds > n. (3)

By Lemma 2, GG is hamiltonian. However, we present a short proof of this fact according
to the latest terminology.
Case 1. N(v1) N Nt (v,) # 0.

Let v € N(v1) N N*(v,), that is v1v,v,0~ € E(G). Since

— =
viv Poyu™ Pog
is a cycle of order p, we have ¢ > p, implying that ¢ = p. Since G is connected, we have

¢ =p = n, that is G is hamiltonian.
Case 2. N(v1) N N*(v,) = 0.
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It follows that
n>p > N+ [N (v)] + [{vi}] >
> [N (v)] + [N(vp)[ +1 = d(v1) + d(v) + 1.
By (3), n > 2ds + 1, contradicting the hypothesis ds > 3. ]

Proof of Theorem 2. Let ? = V102...1, be a longest path in G. Define the vertices
X1, T2, .oy Tgy Y1, Y2, -, Yy as in proof of Theorem 1, where we have proved

d(v1) + d(vy) > 2ds. (4)

Case 1. z; < yy.
Let
H .
{Lz:szzzzlgzgm}

be a vine of minimal length m on P. Since Pisa longest path in G, we have Ly, Ly € E(G).
Next, since m is minimal, we have z; < 23, ; < w3 and wy,—1 < Yy, Zm—2 < yy. Choose
27 € V(P) such that we < 27 and |V(w2?zf)| is minimal. Analogously, choose w}, € V(P)
such that w}, < z,-1 and |V (w}, P zp,—1)| is minimal. Put

m—1

H=PU |J L U{viz], vpwp, }.
i=2

By deleting the following paths

% g
sz—l

— . -,
w; Pz (i=3,4,...m—1), wy Pz, w,

from H (except for their end vertices), we obtain a cycle C' with at least d(vq1) + d(v,) + 1
vertices. By (4),
c> |V (C)| > d(v) +d(v,) + 1 > 2ds.

Case 2. y; < ;.
Case 2.1. N(v;) N NT(v,) # 0.
Let v € N(v1) N N*(v,), that is v1v,v,0~ € E(G). Since

— =
viv Poyu~ Py

is a cycle of order p and G is connected, either p < |V(G)| and we can form a path longer
than P (a contradiction) or p = |V(G)[, implying that ¢ = p = n.
Case 2.2. N(v1) N N*(v,) = 0.

Since y; < x;, we can choose x; € N(v;) and y; € N(v,) such that y; < z; and
010, 1,0 € E(G) for each vertex v with y; < v < x;. Put

— —
C = vz, Py, Pv,.

Then
¢ > |[V(O)| = [N(vi)| + INF(vp)] + [{v1}] — {y;}]
= |N(v)| + [N (vp)| = d(v1) + d(vy).
By (4), c > 2ds. |
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Shpwlyh ptinptdGtph Gnp plnhwiGpugmuiGtn
U. Lnyupqyuib, Y. UnutivjwG L d. ‘Ghynnnujwul

Udthnthnid

Qhgnp G-G 6 GJuqugnyyG wunhdwl b 6 = d; < dy < ... < d, wunhdwlwyhG
hwonpnuwlwlnipyni niltgnn n ququwpwlh qpudp Lt:  G-h wdkGwbpyup ghyh
tpyupmipymlp Gulwyymd £ e-ny: 1952-h6 Fhpwly G wuyugnighg, np (i) di > £ wujdwGhG
pujwpwpnn juiwjyuyuwb gpud niGh LwdhjmnbGh ghy. (i) judwywywi 2-juyuygyuo
qnupnid ¢ > min{n, 2d; }: Lhpjuw wfuwwmwlpnid pipynd GG GpYwd wpnyniGpGhph tpynt
plnuyGmuGp.(iii) d; > 5 yujiwihG pujupupnn juiwjwuwl gpud mbh {wihpunnth
ghyy, (iv) judwjuwb 2-fuuyuygqud gpupnid ¢ > min{n, 2ds}: Unwgyud wpnyniGpGhpp
tipwlw ;66 puptjwydwG:

HoBrie 060011eHusa TeopeM Aupaka
M. Kyaakaag, K. Mocecan u 7K. Hukorocsan

AnHoTanuys

[Mycts 6 = dy < dy < ... < d, TIOCA€AOBATEABHOCThL CTeIlleHel BepIIUH 7n-
BepuIinHHOTO Tpada (G ¢ MUHUMAABHOM CTeleHbio §. AAWHA AAMHHEMINEro IUKAa
rpadga obo3HauvaeTca yepes3 c. B 1952 ropy Aupak paokazaa, 4To (i) Ka*kABIU rpady
YAOBAETBOPSIOIINAM YCAOBUIO d; > 4, uMeeT [aMABTOHOB IUKA; (ii) ecan G sgBAsIeTCS
2-cBsI3HBIM TrpadoM, To ¢ > min{n,2d;}. B HacTosIel paboTe AoKasbIBatoOTCs: (iii)
KaXKABIM Ipad yAOBAETBOPSIIOIINM YCAOBHUIO ds > 3, uMeeT ['aMABTOHOB LMKA; (iv)
ecau G siBAsIeTCs 2-CBSI3HBIM rpadoM, To ¢ > min{n,2ds}. TToayueHHBIE pe3yABTATHI

HEYAYYIlaeMBI.



