Mathematical Problems of Computer Science 48, 23—-32, 2017.

About Complexity of FFT Algorithms for Length of
q x 2P

Rafayel V. Barseghyan

Institute for Informatics and Automation Problems of NAS RA
e-mail: rafayelbarseghyan@ipia.sci.am

Abstract

The paper presents logarithmic formula which allows to compute the exact number
of necessary operations for computing the discrete Fourier transform (DFT) of an
arbitrary ¢ x 2P - length, where q is an odd integer.

Keywords: Fast Fourier transform (FFT), Split-radix algorithm, Computational
complexity.

1. Introduction

The discrete Fourier transform(DFT) has a wide range of applications in many fields of
science and engineering|1],[2]. The main reason for its popularity is the existence of various
algorithms which allows to significantly reduce the computational complexity. These algo-
rithms are generally known as fast Fourier transforms (FFT). Fast algorithm for efficient
computation of DFT was first introduced by Culey and Tukey by their historical paper in
1965 [3]. FFT algorithms allow to compute DFT of size N with O(N lg N) operations in
contrast to direct form computation which requires O(N?) operations. There are a number
of FFT algorithms, but the most popular methods are based on fixed-radix and split-radix
approaches. Split-radix algorithms have been considered to be the most computationally
efficient and structurally regular.

Split-radix algorithm was first introduced by Yavne [4] in 1969 and later by various
authors [8]. Split-radix algorithm allows to compute DFT of N = 2P with 4N1g N —6N +8
arithmetic operations. In recent years by various authors [5], a new modification of split-
radix algorithm was developed which allows to perform DFT of N = 27 with %N lg N —
2N —21g N — 2(—1)N1g N + 32(—1)"¢" + 8 arithmetic operations.

For applications, which need to perform DFT of sizes N # 2P, usually specialists use the
zero padding technique. It means that the input sequence is filled with zeroes until it becomes
a power of two length for performing any available FFT algorithm. Such method significantly
decreases the required number of arithmetic operations. DFT for input sequences which has
length non-power-of-2 is required in many practical applications, it is an important problem.

Algorithm for computing DF'T for sizes ¢ x 2P, where ¢ is an odd integer, was introduced
by Bi and Chen in 1998 [6]. Algorithm has a 2/4 split-radix structure and in case of ¢ = 1
has the same complexity as the conventional split-radix FFT algorithm. After that, in 2004
by Bouguezel and et. al. [10] a new improved algorithm for ¢ x 2P length DFT was presented.

23

24 About Complexity of FFT Algorithms for Length of ¢ x 2P

Algorithm is based on 2/8 split-radix FFT algorithm scheme and improves such important
factors as data transfer, address generation, twiddle factor computation and access to the
lookup table, but it did not reduce number of arithmetic operations. In 2010 Bi and Chen [7]
published a new paper where they presented a unified method for generation of 2/2a (where
a is an integer and a > 1) split-radix algorithms for ¢ x 27 length DFTs.

In this paper a general logarithmic formula is derived for calculating number of arithmetic
operations for 2/4 and 2/8 split-radix algorithms for ¢ x 27 length DFTs [14]. For all ¢ < 20
special cases, formulas are developed for counting exact number of arithmetic operations
and some cases are shown, where computational effectiveness is inversely proportional to the
length of the DFT-size.

2. General Algorithm

Let © = {xg,71,...,oy_1}" be a complex valued column-vector of length N, where N =
q x 2P and ¢ is an odd integer. The DFT of this vector are defined as

2

Z w[n]Wy, (1)

k=0

where
0<k<N-1, Wg=-exp(—j%n)=cos(2n)—jsin(%Zn), j=+-1L
Below the algorithm from [7] is presented. Even indexes of the transform are computed by

N/2-1

X[2k] = > (xln] +aln+ N/2)WE, (2)

n=0

where X[2k] is an N/2 DFT. The odd indexes are defined by

2

X[2ak + 1] = Z [WRiPer D, (3)

where 0 < k < (N/2a) — 1, and a is an integer (a > 1) and [has a selected odd values so
that 2ak + [generates N/2 odd integers that can be uniquely matched to all the odd index
values between 0 and N. With some manipulations based on the periodic and symmetric

properties of Wa®***9 (3) can be represented as

(N/2a)—1 (N/2a)—
X2ak+1 = > & [n]WRWak, + Z [n+ Nj2a] WOk, +
n=0 4)
(N/2a)—1 _ (
a—1)N n Ny
+ > x’[n—l—i()]W](\,Jr 2a W NJ2as
n=0 2a
where n =0,1,2..., N/2—1 and

2'[n] = z[n] — x[n + N /2. (5)

It can be observed that (4) is a length-N/2a DFT the input sequence of which is the result
of the computation inside the brackets of (4) for n = 0,1,2..., N/2 — 1. In summary, the
even indexed outputs of (1) are obtained from one length-N/2 DFT defined in (2) based on

R. Barseghyan 25

the radix-2 decomposition, and the odd indexed outputs are obtained from a length-N/2a
DFTs, based on the radix-2a decomposition. The complexity of algorithm can be computed
by the following expressions:

Cxy = N/2 + aC]>\<f/2a + %CX +2N - CF,

6
Cx = Cjy +aCf o, + 5:CT +3N = CF, ©)

where by C* and C'" denote the number of real multiplications and additions that are used
for each of the inner sums defined in (4), and C;* and C; is the number of real multiplications
and additions saved from all the trivial twiddle factors Wi in (4).

3. 2/4 Split-Radix Algorithm

For a = 2 the algorithm becomes a modified version of conventional 2/4 split-radix algorithm.
Inserting a = 2 into (4) we get

N/4-1 1 N
X[k +1] = Z N n—l—z WX DW=
N/a-1 B =0 (7)
. N
= > WR@ [+ (=)' In+ WG,
n=0

From (7) we can see that it becomes a conventional split-radix algorithm which is reported
in [4],[8],]9]. To cover all odd indexes we set [= {—1,1}. In this case, we have an arithmetic
computational gain only in cases of n = 0 and n = N/8 (W§ and W]l\,N/ ® twiddle factors
become trivial).

Now it is easy to see that the number of arithmetic operations are

8

Using the theory of difference equations and Maxima [12] computer algebra system, we get
the number of arithmetic operations required for computation of (7) in logarithmic form

2P(28¢—3C;+ —3C —1)P(10¢—3C5 +6C p+3
2q q 2q p2

—
Cy = 9 9 * 5+ 2, (9)
2p 44 3C>< -3Cy —1)P(10g+3C, —6C
]>\<[(Ul .) () (q—"_g 2q q) [)2p;_2q 6 ,

where C, and (5, denote the complexities of ¢ and 2¢ length DFTs, respectively. Using
methods from [6] for computing 2¢-length DFT we obtain

C = ZC; + 4q,

10
e (10)

finally substituting (10) into (9) and 2P = % we get

Ck = 5pg2° — 3 (16q — 9C;) — Sq(—1)P + 2q,
N = 3pq2 — 3 (44q — 9C)) — Lq(—1)? + 6q,

(11)

26 About Complexity of FFT Algorithms for Length of ¢ x 2P

4g-length DF'T can be computed by
CL;; = 46‘;r + 16¢
Cy, = 4C7

Using it and (8), finally we get the formulas which show the number of real arithmetic
operations of ¢ x 2P

CY = 8pg2r — Z(16q — 9C)) — 2q(—1)" + 2¢ =,
= 3ogs (§) = N (8 - 507) — a1 + 2,

(12)
Cx = 3pq2r — %(38¢ —9C)) + 2q(— 1)p+6q:
__ 4 1 10 2
= iNlog, () = N (§ - 3CF) +3 (7)1 6q.
If ¢ = 1 and, therefore C;” = 0 and C;" = 0 from (12) we can get
Ch =3Nlogy N — BN — 2(—1)eeN 4 2, (13)

C% = $Nlog, N — §N+ s(=1)em Y +6.

(13) is the same as the number of real arithmetic operations count required by conventional
split-radix algorithm. Doing some optimization from [6], we get the following recurrent
expressions for computing 8¢ length DFTs.

CY = Cf, +4C + 36q = 8C, + 52¢,
Cy =Cp +207 +2C% =6Cx + 207

sq’

(14)

where C' denotes the number of arithmetic operations required by scaled DFT [6]. Using
(14), we get an improvement in the number of arithmetic operations

Cl = %qup — 29 (16 — 90*) 2 q(—1)P + 2¢q =,
= 2N log, (ﬁ) — (;C;) 20(— 1)10g2() + 2q,
Cx = 3pq2P — 2(82¢ — 3(5C) + CL)) + 2(Tq+ 3 (C) — CX))(—1)P + 6g =

= §Nlog, (¥) = 15 (82 = 2(5C; + C)) + 3(7Ta +3(C; = Cla))(~1)1°g2() + 6.
(15)

3.1 Complexity of 2/4 Split-Radix Algorithm for ¢ < 20

In [6] a method for computing 3-point DFT with optimization in case of 24-point is presented.

Using that result we can get a complete expression which describes the number of arithmetic
operations required by 3 x 2P-length DFT.

CR(3 x 27) = 8p2P + 327 — 5(—=1)" +6 =

= §Nlogy(§) + SN — F(- 1)) +6,)
CX(3x2°)=4p2r — 1127 +2(-1)P +18 =

= 4 Nlogy(¥) — LN +2(—1)e:(3) + 18,

R. Barseghyan 27

For ¢ =9
CH(Ox2P) =24p2P +68 2P —2(—1)P + 18 =
log,
= §Nlog, (§) = 8N = 2(-)"=(3) + 15, .
CH(9x2°)=12p2P —24 2 + 10 (—1)" + 54 =

~ £Vlog, (§) - $ + 10 (-)"(3) 4 54

For ¢ =15
Cr(15x 27) =40p2P 4 427 — 10(—1)" + 30 =
— £ Nlog, (&) — 4N — 2(-1)"=(5) 1. 30,
C} (15 x 2P) :20p2p—m2p+%(—1)p+90: 18)
= 4 Nlog, (&) — 0N — 2(~1)"=(5) 4 90,
For computing ¢ = 7 length DFT, we use the method presented in [13]. That method allows
to compute DFT with CF = 72, CF = 16. For getting a full logarithmic expression for
7 x 2P we use (12).
CR (T x 2°) = 123Fpp 4 S123+P — H(—1)P + 14 =
= $Nlog, (¥) + 380N — W (1)le(¥) 4 14,

COx (T x 2P) = 12%pp — 8lop 4 B(—1)P + 42 = (19)
- %NlogQ (%) - 16216N + 14(1)log2() +42.
In case of ¢ = 11 from [13], we have C}; = 168, C}} = 40
C;{,(ll % Qp) — £23+pp + ﬁ23+p 22()p + 9292 =
= $Nlog, (&) + 380N — 2(-1)le(F) 4 22,
O3 (11 x 20) = Lo2wp _ 2ol4p 4 22(_ 1) 4 66 — (20)
= 4Nlog, (%) — BN + 2(-1)°=(%) 1 66.
In case of ¢ = 13 from [13], we have C}; = 188, O} =
C(13 x 20) = 1934wy 4 8TLo2ep _ 26(_1)p 4 96 —
= §Nlog, (%) N = 2= 1)1%(%) + 26, 1)

O (13 x 27) = d824pp _ STol4p 4 26(_1)p 4 78 =

4Nlog, (¥) — BN + 26(—1)"(F) 4 78,

28 About Complexity of FFT Algorithms for Length of ¢ x 2P

In case of ¢ = 17 from [13], we have C}; = 274, Cy5 = 82

CR(17 x 27) = H23Fpp 4 10T01+p _ SL(_1)p 4 34 =

= $Nlog, (&) + LN — L (-1)e(F) 4 34

(22)
CR(1T x 27) = T924pp 4 2924w 4 34(_1)p 4 102 =

N

= §Nlog, (§%) — BN + 5~ 1)'z2(3%) + 102.

In case of ¢ = 19 from [13], we have Cjy = 404, Cy5 = 76

CR(19 x 27) = 2223+pp 4 83392+p _ 3B (_1)p 4 38 =

= §Nlog, (%) TN = F(= 1)10g2(1%) + 38,

(23)
CF(19 x 27) = Lo ey _ 1991+p 4 38(_1)p 4 114 =

N
= 3Nlog, (f5) — TN + F(-1) 5 (1) 4 114.

4. 2/8 Split-Radix Algorithm
In case of a = 4, the algorithm becomes 2/8 split-radix algorithm.
N/4-1

N
X8k +1] = Z W Z n+18]W”)WN/8 (24)

The total numbers of real multiplications and real additions needed by the algorithm are

. (25)
Cn = Cy)p +4C% s + 3N = Cf.
Below the number of arithmetic operations in logarithmic form are presented
Ch = pq2r — Bq2v — Lor (C;“ — (20 + CQZCL)) +ICH+
+(=1)P2r2 [7(12C — 2(C5, + Cif, + CF) + 55¢) cos(p arctan(v'7))
+VT(4C] — 2(11C5, — 5CY, — CF) — 99¢) sin(p arctan(v/7))]
(26)

C = 3pg2r — Bq2r — 129 (CF — (20 + C3,Ce)) + 1Cr +

+(=1)2r2 [1(2(CF = 6C) + C3y + Cii) — 25¢) cos(p arctan(v/7))
+VT(CF + 405 — 2205, + 5Cy, — 45q) sin(p arctan(v/7))].

where by C,,Cy, and Cyy denote number of arithmetic operations required for computations
of q, 2q and 4q length DFT's, respectively. For computing 2q and 4q length DFT, we can use

R. Barseghyan 29

methods described in the previous section, which allows to rewrite (26)
Ch = pg2r — Sq2v — 227 (C:“ — 80;) + 1CH+
+(—=1)P2P/2 [7(15q — 2C;") cos(p arctan(+/7))
+V7(2C;" — 27q) sin(p arctan(v/7))]
Cx = 3pq2r — Bq2r — Lov (CtX — 80;) + 10+
+(—=1)P2P/2 [7(25q — 2C°) cos(p arctan(+/7))
+VT7(2C — 45q) sin(p arctan(\/7))).

4.1 Complexity of 2/8 Split-Radix Algorithm for ¢ < 20

In case of ¢ = 15, we have Cf5 = 168, Cj5 = 30 and from [7] C;" = 180, C; = 60 and
therefore
C = 2pq2r — 2q2p — £2¢ (C;“ — 80;) + 1CH+

+(—=1)P2P/2 [7(15q — 2C;) cos(p arctan(+/7))
+V7(2C;" — 27¢) sin(p arctan(v/7))]

(28)

Cx(15 X 27) = 3p15 x 20 — 1115 % 20 — 15(_1)Por/2() 4 45

+(—=1)P2P/2 [7(25q — 2C}) cos(p arctan(+/7))
+V/7(2C) — 45q) sin(p arctan(v/7))].

5. Comparison

The number of additions and multiplications required for computing DFT for various lengths
are presented in Table 1 (2/4 split-radix algorithm). As an example a range from 256 to
2048 is chosen. Using only conventional algorithm for 2” we have only compute DFT of
256,512, 1024, 2048 sizes. If size is not equal to these values we need to pad the input data
up to next 2P. Using ¢ x 2P algorithm allows to cover the range 256 — 1024 with 27 new
points. This approach allows to significantly reduce the number of arithmetic operations.
To find out the ¢ for which the algorithm becomes the most efficient in terms of the number
of arithmetic operations, first of all we cut the values of ¢ for which

Cy, > Ch,, but Ny < Ny, where Cy = Cf;+Cf. Tt is easy to see that only for 1,3,5,9,13,15
condition presented above is true. For getting more accurate results we compare the value
of By = CTN Finally we get

EN(Q X 2p) < EN(Q X 3p) < EN(Q X 15p) < EN(l X 2p) <
< EN(5 X 2p) < EN(15 X 2p)

30 About Complexity of FFT Algorithms for Length of ¢ x 2P

Table 1: Number of arithmetic operations required by 2/4 split-radix algorithm for the DFT
length 256 — 1024

N q p Add. Mul. Count
256 1 8 5380 1284 6664

272 17 4 6832 1720 8552

288 9 5 6036 1196 7232

304 19 4 9200 1672 10872
320 5 6 6736 1880 8616

352 11 5 9468 2204 11672
360 45 3 7812 1140 8952

384 3 7 8028 2192 10220
416 13 5 10852 2372 13224
448 7 6 10992 2760 13752
480 15 5 10956 2112 13068
512 1 9 12292 3076 15368
544 17 5 15092 4052 19144
576 9 6 13584 3136 16720
608 19 5 19996 4028 24024
640 5 7 15172 4580 19752
704 11 6 20784 5288 26072
720 45 4 17424 3000 20424
768 3 8 18096 5396 23492
832 13 6 23888 5784 29672
896 7 7 24364 6668 31032
960 15 6 24432 5460 29892
1024 1 10 27652 7172 34824
1088 17 6 33040 9464 42504
1152 9 7 30228 7724 37952
1216 19 6 43184 9576 52760
1280 5 8 33744 10840 44584
1408 11 7 45308 12380 57688
1440 45 5 38628 7620 46248
1536 3 9 40284 12816 53100
1664 13 7 52196 13700 65896
1792 7 8 53488 15688 69176
1920 15 7 53964 13344 67308
2048 1 11 61444 16388 77832

In Table 2 are presented the comparison results for the various length DFTs (2/8 split-radix
algorithm).

R. Barseghyan 31

Table 2: Number of arithmetic operations required by 2/4 split-radix algorithm for the DFT
length 256 — 2048

N q p Add. Mul. Count
256 1 8 5380 1284 6664

360 45 3 8048 1360 9408

480 15 5 11256 2520 13776
512 1 9 12292 3076 15368
720 45 4 18076 3620 21696
960 15 6 25212 6180 31392
1024 1 10 27652 7172 34824
1440 45 5 39696 8640 48336
1920 15 7 55824 14880 70704
2048 1 11 61444 16388 77832

6. Conclusion

In case of looking for computationally efficient algorithm in terms of number of multiplica-
tions in general case we need to choose 2/8 split-radix FFT algorithm, because coefficient of
N log, is smaller. Efficiency of algorithms in terms of total number of arithmetic operations
is discussed below.

The total number of arithmetic operations required by 2/4 split-radix algorithm can be
computed using (12) and is presented below

Cn(2/4) = 4pq2” — 2°(6q — C;f) + 8¢. (29)

The total number of arithmetic operations required for computation 2/8 split-radix algorithm
can be retrieved from (28)

Cn(2/8) = 4pq2” — 2°(3q — (3C: — Cy)) + 8q+
+2(—1)P2P/2 x [7(20q — C}) cos(a)+ (30)
+V/7(Cy — 36q) sin(a).]

For getting a computationally efficient algorithm, we need to calculate Cnx(2/4) — Cn(2/8)
using (29) and (30). For simplicity, only the coefficients for 2 and ¢ x 2?7 are included

Cn(2/4) — Cn(2/8) = (3¢ — 2Cy)2P <0

In other words we can say that if C; is greater than 28¢, 2/4 split-radix algorithm is more
efficient compared to Cy(2/8).

References

[1] E. O. Brigham, The Fast Fourier Applications, Englewood Cliffs, NJ, Prentice-Hall,
1988.

2] J. K. Ersoy, Fourier-Related Transforms. Fast Algorithms and Applications, Englewood
Cliffs, NJ, Prentice-Hall,1997.

32 About Complexity of FFT Algorithms for Length of ¢ x 2P

3] J. W. Cooley and J. W. Tukey, “An algorithm for the machine computation of the
complex Fourier series,” Math. Computation, pp. 297-301, 1965.

[4] R. Yavne, “An economical method for calculating the discrete Fourier transform,” in
Proc. AFIPS, vol. 33, pp. 115-125, 1968.

[5] M. Frigo and S. G. Johnson, “A modified split-radix FFT with fewer arithmetic opera-
tions”, leee Trans. Signal Processing, vol. 55, pp. 111-119, 2207.

6] G. Bi and Y. Q. Chen, “Fast DFT algorithm for length N = ¢ x 2" IEEE Trans.
Circuits and Systems II, vol. 45, no. 6, pp. 685 - 690, 1998.

[7] G. Bi, G. Li and X. Li, “A unified expression for split-radix DFT algorithms,” pp. 323
- 326, 2010.

[8] P. Duhamel, “Implementation of split-radix FFT algorithms for complex, real, and real-
symmetric data”, IEEE Trans. Acoust., Speech, Signal Process., vol. 34, pp. 285 - 295,
April, 1986.

9] H. V. Sorensen, M. T. Heideman and C. S. Burrus, ?On computing the split-radix
FFT,” IEEE Trans. Acoust., Speech, Signal Process., vol. 34,pp. 152 - 156, Feb. 1986.

[10] S. Bouguezel, M. Omair and M. N. S. Swamy, “A new radix-2/8 FFT algorithm for
length-q¢ x 2™ DF'Ts,” IEEFE Trans. Circuits and Systems I, vol. 51, no. 1, pp. 1723-
1732, 2004.

[11] S. Bouguezel, M. Omair and M. N. S. Swamy, “A general class of split-radix FFT algo-
rithms for the computation of the DFT of length-2™” IEEE Trans. Signal Processing,
vol. 55, no. 8, pp. 4127 - 4138, 2007.

[12] Online: [Available| http://maxima.sourceforge.net

[13] I. Selesnick and S. Burrus, “Programs for Prime Length FFTs”
http://cnx.org/content/m18137/1.5/.

[14] R. Barseghyan, “Complexity of the composite length FFT algorithms”, Proceedings of
International Conference CSIT 2015, Yerevan, Armenia, 2015.

Submitted 22.08.2017, accepted 06.12.2017.
g x 2* - bpupnipjul DU -punnnipjul dwuhb
k. PwpubinyuG
Udthnthnid

Wuwwnwlpnd unwgywd b nquphpiwyul pwlwdlp, npp juiwjwlwl ¢ X
2P-tpupmipjwl Jtyumnpltph hwdwp pnyp L wwihu hwpqupyty dnipgth ghuypbn
dLuwhnfunipjul (HUQ) hwdwp wlhpwdtipm gnponnmipynGGtph dpqphwn pwlGuyp, npnbn
q-G YytGu phy L:

O caoxxuoctu araropuTMOB BITMD AN AAMHEL ¢ x 27
P. bapceran

AnHoTanuys

B oTol cTaThe BBIBepAeHA AorapudMuueckas (OpPMyAd, KOTOpasg I[IO3BOASIET
BBIYUCAUTH TOYHOE KOAMUYECTBO HEOOXOAUMBIX OIlePAllui AN BEIYMCAEHUS AUCKPETHOT'O
npeobpazoBanusa Oypwe (DFT) AT BEKTOPOB AAMHEBL ¢ X 2P, TA€ ¢ - HeYeTHOe IeAoe
YHUCAO.

