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Abstract

The article is dedicated to the famous Diophantine equation of the form a3+b3+c3 =
d. We solve this problem in some particular cases. Using the package Mathematica
11 we find an efficient algorithm to solve this problem. This algorithm is simpler and
uses a significantly smaller number of operations than the other known algorithms for
solving these equations.
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1. Introduction

Fermat’s equation for odd exponents n asks for three integers, each with an absolute
value greater than 0, such that the sum of their n—th powers is zero. A related problem
is to find three integers, each with an absolute value greater than the n—th root of k, such
that the sum of their n—th powers equals k.

For example, determine the integers a, b, ¢, with |al, [b|,|c| > 1 such that

A+ b+ =d. (1)
This has infinitely many solutions because of the identity
3 3 3
(1 — 9m3) + (9m4) + (—Qm4 + Bm) =1. (2)

However, there are other solutions as well. Are there any other identities that give a different
1-parameter family of solutions?

Is every solution of (1) a member of a family like this? In general, it is known that there
is no finite method for determining whether a given Diophantine equation has solutions.
However, it is an open problem, whether there is a general method for determining if a given
Diophantine equation has ”algebraic” solutions, i.e., an algebraic identity like the one above
that gives an infinite family of solutions. More specifically, is there a proposition, that only
equations of genus < 2 can have an algebraic solution?

It may be worth mentioning that the complete rational-solution of the equation a® + b% +
c3 = t3 is known, and is given by

a:q[l—(x—?)y) (m2+3y2)],

33



34 A New Method of Solving Diophantine Equation a® + b + ¢ =d

b= —q [1 — (xz + 3y) (:c2 +3y2)] )
c=q [(1'2 + 3y2)2 — (z + 3y)] ,

t=q (s +35%) ~ @ - 39)].

where ¢, z,y are any rational numbers.

Thus, if we set g equal to the inverse of
[(:cQ +3y2)° — (z — 3y)} we have rational solutions of (1). However, I think the problem of
finding the integer-solutions is more difficult. If ¢ is allowed to be any integer (not just 1)
then Ramanujan gave the integer solutions as

a = 3n? — bnm — 5m?
b = 4n? — 4nm + 6m?

¢ = 5n? — bnm — 3m?

t = 6n® — 4nm — 4m?

This occasionally gives a solution of equation (1) (with appropriate changes in sign), as in
the following cases

n m a b c
1 -1 1 2 -2
1 -2 9 10 -12
5 -12 -135 -138 172
19 -8 =791 -812 1010

46 -109 11161 11468  -14258
73 -173 65601 67402  -83802
419 -993  -951690 -926271 1183258

However, this does not cover all the solutions given by (2). By the way, the equation
a®+0b%+c* = 1 has algebraic solutions [1], [2] other than (2). There are known to be infinitely
many algebraic solutions, for instance:

(1 — 983 + 64815 + 38881%)° + (—135¢% + 3888¢10)° + (3¢ — 814 — 129617 — 3888¢10)° = 1

However, it is not known whether every solution of the equation lies in some family of
solutions with an algebraic parameterization.
Interestingly, note, that if you replace 1 by 2, then again there is a parametric solution:

(67 +1)" — (66 —1)" + (6*) =2 (3)

and again this does not cover all the known integer solutions. Note, that precisely one
solution is known that is not given by (3) (see [1]):

12149283 + 34802053 — 35288753 = 2.

It is evidently not known until today, if there are any other algebraic solutions besides the
one noted above.

For d > 2 Kenji Koyama [3] has generated a large table of integer solutions of
a® + b + 3 = d for noncubes d in the range 1 < d < 1000 and |a| < [b] < |c] < 2% —1
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consists of two tables: Table 1 (55 pages) contains the integer solutions, sorted by d, and
Table 2 (2 pages) lists the number of primitive solutions found for each d in the search range.

In general, it seems to be a difficult problem to characterize all the solutions of
a® 4+ b® + 3 = d for some arbitrary integer d > 2. In particular, the question of whether all
integer solutions are given by an algebraic identity seems both difficult and interesting.

Nevertheless, for instance, in the case of d = 3, there is still no solution known apart from
the obvious ones: (1, 1, 1), (4, 4,5), (4,5, 4), and (5, 4, 4). For d = 30, the first solution was
found by N. Elkies and his coworkers in 2000 [5]. It is interesting, that in 1992, D. R. Heath-
Brown [6] made a prediction on the density of the solutions for d = 30 without knowing any
solution explicitly. Over the years, a number of algorithms have been developed in order
to attack the general problem. Concerning the various approaches, an excellent overview,
invented before 2000, was given in [7], which was published in 2007. Historically, the first
algorithm, which has a complexity of O (B'*) for a search bound of B is the method by R.
Heath-Brown [8].

Return the interested representations

d=a*+b +¢c° (4)

of various integers d as sums of three cubes.

The cubic residues with respect to module 9 are: 0, 1, 8, thus, it follows by inspection of
cases that for every integer solution to (4) we obtain d # 6 + 4(mod9). Any given solution
can be written in one of the following forms for non-negative a, b, c :

ld=a*+b+cSor|d=a>+b—cor|d=a>—b—c3

Therefore, it suffices to consider non-negative solutions to the equations a® +0* = ¢3 & d
and a® + b® + ¢3 = d (for d = 0 it is a case of Fermats theorem that there are no integer
solutions).

In practice, we need to search for primitive solutions, i.e., GCD(a,b,c) is not divisible
by d, since the non-primitive solutions for fixed n are routinely obtained from the primitive
solutions for their divisors.

Considering d = m3,d = m'? and d = 2m® type values of d, and multiplying both sides
of (3) by m?, after applying the change of variable tt/m, one can obtain the more general
solution

(66 +m?)” — (6° = m*)" — (66)" = 2m” (5)

which is primitive for GCD(6t,m) = 1. If GCD(6t,m) > 1, then dividing (5) by
(GC'D(6t3,m?))? gives a primitive solution. For [,k > 1 the solutions are:

(3t3 + 23l—lm3)3 . (3t3 . 23l—lm3)3 . (213mt2)3 — 291—2m9 (6)
(2t3 + 33k‘—1m3)3 . (2t3 . 33k‘—1m3)3 . (23k‘mt2)3 — 239k‘—3m9 (7)
(t3 + 23l—133k—1m3)3 . (t3 . 23l—133k—1m3)3 . (213kmt2)3 — 291—239k—3m9 (8)

Note, that they are primitive for GCD(3t,2m) = 1, GCD(2t,3m) = 1 and GCD(t,6m) = 1,
respectively.

The last equations give polynomial families for n = 2, 128, 1458, 65536, 93312, 3906250,
28697814, etc.
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An analogous procedure may be applied for 3 to obtain families of solutions for numbers
of the form m!'2. Multiplying both sides by m'? and applying the transformation t/m, we
will get
3

(th3 + m4) (9754 + Bmt)3 + (9754)3 =m' 9)

which is primitive for GC'D(t,3m) = 1. In particular, for 3 —m and k1,
3 3 3
(Bkmt?’ + 34k_2m4) — (t4 + 33k_1lm3t) + (t4) — 312612 (10)

is primitive for GCD(t,3m) = 1. Equations (9) and (10) give families of solutions for n =
1, 729, 4096, 2985984, 16777216, 244140625, 387420489 etc.

2. New Method and Results

Considering the more generalized problem of the sum of three cubes, we are seeking
Pi(y), P,(y), Ps(y) with the highest possible degree polynomials and @(y) with the lowest
possible degree polynomial, such as

PP (y) + P3(y) + P{(y) = Q(y)

Actually, the solution of this problem has a close relation with the above trivial problem,
since the case of deg@(y) = 0 coincides with our problem. Nevertheless, the estimation of
possibility of minimization of degQ(y) itself is also an interesting problem.

Result 1: The first result of this paper is devoted to the case of degrees (8, 8, 6). We
search the desired polynomials within the class of polynomials of the form

3 3 3
(ax8 + ba® + c:c2) - (a:c8 + b2’ + cle) - (Axﬁ + Ba® + C) (11)
First of all, we expand it

—C* = 3BC%* + (¢ = 3B*°C' = BAC? — &}) 2° + (—B* + 3bc* — 6ABC — 3byc}) 2°

+ (—3A32 + 3b%c + 3ac® — 3A%C — Bb%cl — 3acf) x12—|—(b3 —3A’B — b‘z’ + 6abc — 6ab101) 2t

+ (—A3 + 3ab? — 3ab? + 3a*c — 3a201) 18 + (3a2b — 3a2b1) !

—A3+43a3c __ 2Ab _ —A*—aAb2+6a% Ac
3a? ’Bi?:a’ci 9a3

Further,we take by = b, ¢; = and get the following

form:
A2 N A%p? N Abpt N A3p6 2A%  4ASp ¢ 2A3b%c N 4 A5¢2 N 4 A3h%c? 8A3c3+
7290  243a® @ 243a”  729a®  8la” 81af 81a® 27a® 27a4 27a3

2A%  4A%° 2A3b5+8A6bc+8A3b30 8 A3bc? 3,
81a”  8la®  8lad | 27@ ' 274 9a5 )"

<2A6b2 A3ht ASc  4A3b%c A302> 6
— — x

A 4A%P 24%c)
x
27a® 9q4 9q4 9a? 3a?

0t T 27 3a2

Thus, further considerations are devoted to finding the cases, which are interesting for us:
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Case 1: b = 0. The result has the form
Al2 2A% N 4A8-2  8A3S N Abe  A3c2 6
— — — T
729a°  8la” 27a® 27a3 9a4 3a?

Subcase 1.1: ¢ = 0. The result gets the form ng, which is a cube of an integer, thus,

729

it is primitive and not interesting.
Subcase 1.2: ¢ = %, the result is
Case 2: ¢ = 34+  Tho regult:

18a2
A oA [ A AR
19683ab 729a® 108a%  243a*

12 . . oy
—%, again primitive.

Factorizing the coefficient of the last term, one can obtain:

A3 (=343 + 2ab?) (3A3 + 2ab?)

972ab
Substituting a = %. Then the result will get the form:
_ 64b18 _ 6401 23
14348907 A6 177147 A3
Finally, taking z = 2%’ we obtain the result, which is interesting for us: —1 — 648y°.

Practical considerations: Now we investigate this result for applications to solve the
process of the equation (4). Since for maz[abs|a,b, c]] < 10 there are well-known tables
in [4], thus, we seek solutions of (4) satisfying the condition max[abs[a,b,c]] > 10 with
possible small values of abs|d]| (desirably less than 1000).

Thus, the result is:

3

(549 (1 + 36y° + 432y6))3 — (18y? (1+ 108y + 1206y°) )" — (1 + 216¢° + 3888y6)3

= —1 — 648y°

Sure, calculations were expected to be significantly hard, for which we will use Mathe-
matica 11.0 code:

Gsly]:=1/GCD [ (545 (14 36y° +432y°) ) , (18y* (1 + 108y” + 1296y°) ) ,
(1+216y° + 3888y° ) |
FylyJ:=Gis[y] { (549 (1 + 36y° + 4324°) ) , (18 (1 + 108y* + 1296y°) ) , (1 + 216y° + 3888y°) }
Vily-] == Gily)® (—1 — 648”)
Forli = —50,i < 50,7+ +

IfAbs[Vii]] < 1000000, I f[Maz[Abs[Fs[i]]] > 1000000000000, Print|{i, Fy[i], Vi[i]}]]]]

The result is:

{—11, {5000250899358, 5000250895002, 6887541673}, 862487}
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{—10, {2332605605400, 2332605601800, 3887784001}, 647999}
{-9, {1004079120606, 1004079117690, 2066085145}, 472391}
{9, {1004308703118, 1004308700202, 2066400073}, —472393 }
{10, {2332994405400, 2332994401800, 3888216001}, —648001}
{11, {5000877065646, 5000877061290, 6888116665}, —862489}

This means that, for instance:

1004079120606° — 1004079117690° — 2066085145% = 472391.

Result 2: More enhanced result is obtained for the case (9, 9, 7):
(3 4 360y> + 10368y° 4 933129°)% — (—1 + 216y> + 10368y° + 93312y")3

—(4y(5 + 3249° + 3888y°))* = 28 + 1072y°

Goly_] :== 1/GCD[(3 + 360y + 10368y° + 93312y°), (—1 + 216y> + 10368y° + 93312y"),

(4y(5 + 324y + 3888y°))]
Fyly_] := Goly] * {(3(1 + 120y> + 3456¢° + 31104%")), ((—1 + 216y* + 10368y° + 93312y")),
(4y(5 + 3241 + 3888y°))}
Voly-] := Goly)® = (28 + 1072y°)

Forli = —=50,i < 50,7+ +,

I f[Abs[V,[i]] < 10000000, I f[Max[Abs[Fy[i]]] > 1000000000000000, Print[{i, Fy[i], Va[i]}]]]

The result is:

{—21,{-74114970486757701, —74114970485424121, —28010276942676 }, —9927764 }

{—20, {—47775080450879997, —47775080449728001, —19906352640400}, —8575972}
{—19,{-30110146685929077, —30110146684941385, —13901324389292}, — 7352820 }
{—18, {—18508949466179901, —18508949465340097, —9521109889128}, —6251876 }
{—17,{—11065421675141349, —11065421674433881, —6381478799620}, —5266708 }
{—16,{—6412177868488701, —6412177867898881, —4174623277376}, —4390884 }
{—15,{—3587108653214997, —3587108652729001, —2657139390300}, —3617972}
{—14,{—1927845532267197, —1927845531872065, —1639341027352}, —2941540}
{14, {1928001664 725699, 1928001664330559, 1639440601624 }, 2941596 }
{15, {3587344849215003, 3587344848728999, 2657270610300}, 3618028 }
{16, {6412525760839683, 6412525760249855, 4174793146688}, 4390940 }
{17,{11065922191772139, 11065922191064663, 6381695286052}, 5266764 }
{18, {18509654743656771, 18509654742816959, 9521381986920}, 6251932}
{19, {30111122229317499, 30111122228329799, 13901662181324}, 7352876}
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{20, {47776407554880003, 47776407553727999, 19906767360400 }, 8576028 }
{21,{74116748933042763, 74116748931709175,28010781037428},9927820}

Here the most interesting triplet is:
1928001664725699° — 1928001664330559° — 1639440601624% = 2941596

Result 3: Now, considering the case when (25,25, 18), using the same approach we obtain:

1 3
(1—8y(63 + 36y + 280y° + 672y"2 + 768y + 512y24)>

| 59 3
_ (1—8y(63 36y + 2804° + 672y'% + 768y + 512y24)> _ <§(3 +204° + 32412 + 32y18)>

= —8 —13y"

Thus, one uses the following code:

|
Gasly ] == 1 /GCD[(l—Sy (63 + 364" + 280y° + 672y'2 + 768y + 512y24)> ,

1 2
(1—83/ (63 — 36y° + 280y° + 672y"% + 768y'® + 512y24)> , <§ (3 + 2095 + 324" + 32y18)>]

1
Fos[y_] == Gasly] * {(1—83/ (63 + 36y° + 280y° + 672y"* + 768y + 512y24)> :

1 2
(1—83/ (63 — 36y° + 280y° + 672y'? + 768y + 512y24)> , <§ (34 209" + 32y + 32y18)>}

Vasly-] := Gasy]’ * (-8 — 13y°)
Forli = =50,i < 13,i + +,
I f[Abs[Va5]i]] < 1000000000, I f[Max[Abs|F»s5]i]]] > 100000000000000000000,
Print[{i, Fysi], Vas[i] }]]]]

The result is:
{—28,{—21474261883010575951072188890073079601,

—21474261883010575951072188890074308913, 1193639792964388519010222081}, —783071745}

{—24, {—455248482071553635586938761943642154, —455248482071553635586938761944305706,
74444235905117108623638529}, —310542337}

{—20, {—4772185996292552640284454399840035, —4772185996292552640284454400160035,
2796202710357333760000001 }, —104000001}

{—18, {—685188558884868266867584546812447, —685188558884868266867584547232351,
839390063618729392197122}, —442158920}
{—16, {—18028810148480439485764921655324, —18028810148480439485764921786396,
50371912153009412374529}, —27262977}
{—14, {—1279966002355352271319733014033, —1279966002355352271319733167697,
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9106750099297148243458}, —97883976}
{—13, {—401431450040755185937727808239, —401431450040755185937728036727,
4798098357335276047604 }, —501988200}

{—12, {—13567468738287354512175542037, —13567468738287354512175583509,
283982316767867289601 }, —4852225}
{—11,{—6163749044483681037311693681, —6163749044483681037311810809,
237223272615326524916}, —184242408}

{—10, {—284444871111484444599980035, —284444871111484444600020035,
21333354666680000002}, —13000008 }

{—9, {—40840534128228425942658291, —40840534128228425942710779,
6404049823013024116}, —55269928}

{—8, {—537303438740776265183246, —537303438740776265191438,
192154317110640641}, —425985}
{=7,{—-76292876409395782365173, —76292876409395782384381,
69479570742237044 }, —12235560 }

{—6, {—808709748243399993333, —808709748243399998517,
2166658847571458}, —606536 }

{6, {808709748243399998517, 808709748243399993333,
2166658847571458}, —606536 }

{7, {76292876409395782384381, 76292876409395782365173,
69479570742237044 }, —12235560 }

{8, {537303438740776265191438, 537303438740776265183246,
192154317110640641}, —425985}

{9, {40840534128228425942710779,40840534128228425942658291,
6404049823013024116}, —55269928}

{10, {284444871111484444600020035, 284444871111484444599980035,
21333354666680000002}, —13000008 }

{11, {6163749044483681037311810809, 6163749044483681037311693681,
237223272615326524916}, —184242408}

{12, {13567468738287354512175583509, 13567468738287354512175542037,
283982316767867289601 }, —4852225}

{13, {401431450040755185937728036727,401431450040755185937727808239,
4798098357335276047604 }, —501988200}

Here the most interesting triple is:
(—21474261883010575951072188890073079601)%+(21474261883010575951072188890074308913)*
—(1193639792964388519010222081)% = —783071745
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a® + b + ¢ = d mbuph nhnpwlmjwl hwjwuwnpdwl nodwb Gnp dhpnn
U. UJuqyub

Udthnthnid

Znnuop GJhpywd k hwynbh a® + b3 + ¢ = dnbtiuph nhnpwlwmywl hwjwuwpmiGtph
npn Wwulwynp nhiypbtph modwlp:Yphpwnting “Mathematica 117 thwptipp, hwonnyty k&
quty G2Jwo hulnph modwl wpymGuytn wignphpy, npl6 wju fulnph odwl wyp
wgnppuilbiph hwditidwm wytih wunpg L L ogqumugnponid £ qquihnptG thnpp pwGwynipjudp
qnponnnipjniGGhp:

HoBui MeTOA pelieHuss AMOPAHTOrO YPABHEHUS o’ + b° + ¢ =d
A. ABarsiH

AnHoTanus

CTaThs IOCBSIeHa PellIeHnI0 N3BECTHOIO AMOAaHTOBOIO YPaBHEHUS BUAA a’ + b +
¢3 = d B HEKOTOPBIX YaCTHBIX CAydasx. Mcmoab3ys maker "Mathematica 11" yaanoch
HAUTU D3(P@PEKTUBHBIM AATOPUTM HAXOKAEHUA pPEIIeHUU 3TOU 3apaul, KOTOPBIU
II0 CPAaBHEHUIO C APYTUMHM H3BECTHBIMH AATOPUTMAaMM, AQIOLUIVMU pPelIeHUs 3TOU
33Aa4M, IBASETCSA OOAee MPOCTBIM M HCIIOAB3YeT 3HAUMTEABHO MeHbIllee KOAUYECTBO
OoIepaIui.



