Mathematical Problems of Computer Science 48, 64--73, 2017.

Effective and Accurate Binary Clone Detection

Hayk K. Aslanyan

Ivannikov Institute for System Programming of the RAS
e-mail: hayk@ispras.ru

Abstract

Software developers usually copy and paste a particular piece of code as they prefer to
use a pre-written or a partial solution as a basis for solving their problem. However, it can
lead to various errors, as well as increase the size of the source and binary code. Finding
similar parts of code (clones) in binary code becomes more applicable when the source
code is not available. Additionally, a compiler can copy some parts of code during various
transformations and create code clones, which do not exist in the source code. Detection of
binary code clones is used for malware analysis, finding semantic errors, detecting
copyright violation, etc. This article discusses the existing methods of binary code clones
detection and introduces a new method for binary clone detection. It consists of three main
stages. The first stage is based on Binnavi platform [1] and generates program dependence
graphs for each binary function. Graphs are generated based on REIL [2] (Reverse
Engineering Intermediate Language) platform-independent language. REIL representation
is supported for several architectures (x86, x86-64, ARM, MIPS, PPC), thus ensuring the
independence of the tool from the target architecture. The second stage detects clones based
on previously created graphs. A polynomial heuristic algorithm is suggested for finding
the maximum common subgraph of two program dependence graphs. At the third stage,
the obtained clones are visualized for manual analysis.

Keywords: Binary code clone, Program static analysis, Program dependence graph.

1. Introduction

The reuse of code fragments (a continuous sequence of code lines) is often encountered in software
development process. There are several approaches for finding code clones, which are based on
text [3], lexical [4], syntactic [5]—[7] and semantic [8]—[14] analysis of the program. However,
all these methods analyze source code and the task of finding clones in binary code is less studied.
These approaches are not applicable for binary code as binary code is platform dependent and
registers and direct memory access are used, while in source code only variables are considered.
Detection of binary code clones has many practical applications such as finding functionally
similar parts of the program, malware, semantic errors and copyright violations.

Binary code clones are divided into three main types. The first type of binary code clones are
code fragments that completely match. The second type of binary code clones are code fragments,

64

H. Aslanyan 65
which can differ in types, values, names of data and registers. The third type of binary code clones
are code fragments that can differ in types, names of data and registers, and may also differ in
some instructions (in a particular fragment some instructions may be added or removed).

Examples of assembly code clones (for x86 architecture) are shown in Fig.1. The clone of the
first type is exactly matched fragments. The clone of the second type uses ecx register instead of
eax. The clone of the third type uses ecx register instead of eax and has one deleted instruction
(imul eax, ebp+var_4]).

Code fragment

public main
main proc near

var_4= dword ptr -4
argc= dword ptr 8
argv= dword ptr 0Ch
envp= dword ptr 10h

push ebp
mov ebp, esp
mov [ebp+var_4], 5
mov eax,[ebp+var_4]
imul eax,[ebp+var_4]
leave
retn

main endp

Type 1 clone

public main
main proc near

var_4= dword ptr -4
argc= dword ptr 8
argv= dword ptr 0Ch
envp= dword ptr 10h

push ebp
mov ebp, esp
mov [ebp+var_4], 5
mov eax,[ebp+var_4]
imul eax,[ebp+var_4]
leave
retn
main endp

Type 2 clone

public main
main proc near

var_4= dword ptr -4
argc= dword ptr 8
argv= dword ptr OCh
envp= dword ptr 10h

push ebp
mov ebp, esp
mov [ebp+var_4], 10
mov ecx, [ebp+var_4]
imul ecx, [ebp+var_4]
leave
retn
main endp

Type 3 clone

public main
main proc near

var_1= dword ptr -4
arge= dword ptr 8
argv= dword ptr OCh
envp= dword ptr 10h

push ebp

mov ebp, esp

mov [ebp+var_1], 15
mov ecx, [ebp+var_1]

leave
retn
main endp

Fig.1. Examples of code clones (x86 assembler).

2. Binary Code Clone Detection Approaches

Text-based approach. Jang et al. [15] proposed a fingerprinting algorithm called BitShred based
on bloom filters to cluster malware samples. BitShred consists of three phases: shredding a file,
creating a fingerprint, and comparing fingerprints. In the shredding phase, BitShred divides all
executable code sections into fragments. Then for each fragment fingerprint is calculated based on
Bloom filters [16]. At the last stage it compares fingerprints by the following ratio:

J(A,B) = S(BFaABFg) / S(BFaVBFg), where S(BF) is the count of set bits in the BF. Finally,
fragments, having a higher similarity score, are clustered together. The algorithm finds clones of
only the first type.

Token-based approach. A. Schulman [17] proposed a system that creates a hash for each
function in a binary file. Matched hashes that occur in more than one file indicate a clone of the
code. Hashes are based on opcodes and location labels of the opcodes.

Karim et al. [18] algorithm also considers hashes on instructions opcodes, but they are
calculated using n-grams. The algorithms of the approach allow finding clones of the first and
second types.

Metrics-based approach. The system, created by D. Bruschi et al. [19], finds clones in binary
files to detect malicious programs. First, the binary file is disassembled and normalized, then the
dead code is deleted and the code is split into fragments. For each fragment, a metric is constructed
based on the control flow graph. At the last stage, clones are detected by comparing the obtained
metrics.

66 Effective and Accurate Binary Clone Detection

Sabjgrnsen et al. [20] after obtaining the assembler from the binary file, create intermediate
representations of the assembly code. Then, a binary code is partitioned into overlapping code
segments that consist of a block of contiguous assembly from a function. Then they create a
normalized instruction sequence, abstracting the information of memory location and registers.
Next, it performs clone detection on the normalized sequence. They define two methods for
creating clone clusters. The first method is an exact match that uses a hash for each code region,
and a clone exists if there are any repeated hash values. The second method is an inexact match,
which extracts a set of features from a code region and looks for other code regions with the same
feature set. They count the number of occurrences of each feature to create a feature vector for
each region. Next, they use locality-sensitive hashing (LSH) (Andoni and Indyk, [21]) on each
region and perform a distance calculation for clustering based on features for inexact matching.
Based on this work, M. Farhadi et al. [22] created a system for detecting clones of malicious code
in programs.

Algorithms of the approach detect all three types of clones.

Structural-based approach. T. Dullien et al. [23] proposed a system for comparing binary
files based on structural analysis, to search for malicious code. The algorithm consists of two
stages: the generation of several hashes of malicious code and the recognition of similarity between
different sections of code based on the control flow graph.

Y. David and E.Yahav [24] detect similarity among functions based on decomposition of
functions into tracelets, which are continuous, partial traces of execution and are obtained from
control flow graph. To measure similarity between two tracelets, they define a set of simple rewrite
rules and measure how many rewrites are required to reach from one tracelet to another. They do
this step by encoding the problem as a constraint-solving problem and measure distance using the
number of constraints that have to be violated to reach a match.

Algorithms of the approach detect all three types of clones.

Behavior-based approach. In [25] D.E. Krutz and E.Shahab propose a new approach for
code clone detecting, which also detects semantic clones. They use concolic analysis, which
combines concrete and symbolic values in order to traverse all possible paths.

3. Tool Architecture for Binary Code Clone Detection

The proposed model takes into account the following requirements:
= finding all types of clones;
» independence from the target architecture;
= scalability: the size of the analyzed programs can reach hundreds of MB,;
= alarge percentage of true positives (> 90%).

It is allowed to specify values of two variables: the minimum number of instructions for clones
(MN) and the minimum percentage of similarity (MP) of clones.
The work of the tool is divided into three main stages:

1. The first stage is based on Ida pro disassembler [26] and Binnavi static analysis platform
[1]. The Ida Pro disassembler is used as a tool for restoring structures and the control flow
of the program. At this stage, machine code is translated to REIL representation, then, PDG
(program dependence graph) is generated for each function.

2. At the second stage, the assembler code clones are detected taking into account the
parameters of the MN and MP.

3. At the third stage code clones and their corresponding PDGs are visualized.

H. Aslanyan 67

The main advantage of the proposed tool is that it is based on a semantic approach, which is more
correct, than other approaches.

3.1 Generation of PDGs

Binnavi platform is used to generate program dependence graphs for each function. Binnavi
provides an interface for generating and using various intermediate representations of the program
based on REIL, including the generation of the control flow graph, the generation of the call graph
and data dependency graph. As a part of the tool, a new functionality has been added to the Binnavi
platform, which allows each function to automatically generate a control flow graph and a data
flow graph and merge them into program dependence graph (Fig. 2). The vertices of PDG
correspond to REIL instructions, and the edges are data and control dependencies between
instructions. Each vertex has 1D, which is the opcode of its REIL instruction.

mov edx, ds:[esi+8]

str 8h, ,t0 str esi, ,tl
lea eax, ds:[edx+4294967287] -
Assembler instructions add t0,t1,1t2
4 L ‘
str 8h. . t0 add t2, fffffffth, t2
r Fp
str esi, ,tl ‘I’
add t0, t1,t2 add t2, dsbase, t4

add t2, fFFffefh, t2 ¥ 2dd HH7h, edx, 12
add t2, dsbase, t4 Q ldm t4, ,t3 |
ldm t4, ,t3 ¢
str 13, , edx w13, edx and t2, fFFffefh, t2

|

add fffffff7h, edx, t2 add 2, dsbase, ta
and t2, ffffffffh, t2 *
add t2, dsbase, t4

str t4, , eax
str t4, , eax

Data dependences

REIL representation
— Control dependences

Fig. 2. Example of PDG.

3.2 Heuristic Algorithm for Maximum Common Subgraph Detection of Two
PDGs

At this stage a maximum common subgraph is calculated for each pair of PDGs with heuristic
algorithm. This algorithm is named Tracebasedslice. It uses several procedures, which are defined
below. Let G(V,E) be a PDG and X and Y be any sets of PDG vertices, such that X € V. Two
vertices can be matching candidates, if the first vertex’s ID, predecessors’ and successors’ amounts
are equal to the second vertex’s ID, predecessors’ and successors’ amount.

Definition 1: getPredecessors(X,Y) procedure returns empty set if Y is empty, otherwise
returns vertices from X; which are not in Y'and are predecessors for Y’s vertices.

68 Effective and Accurate Binary Clone Detection

Definition 2: getSuccessors(X,Y) procedure returns empty set if Y is empty, otherwise returns
vertices from X, which are not in Yand are successors for ¥’s vertices.

Definition 3: sortVertices(X) procedure sorts vertices of Xby their IDs, predecessors count,
successors count and binary address.

Definition 4: makeCorrespondence (X, Y) procedure returns pairs of vertices from sorted X
and Y'sets, which are matching candidates. It considers vertices’ 1Ds, predecessors, successors
count and based on merging algorithm.

Definition 5: makeOneCorrespondence(X, Y) procedure returns a pair of vertices from
sorted X and Y sets, which are matching candidates.

Definition 6: For any meX and n€Y checkPredecessors(X,Y,m,n) condition is satisfied, if
predecessors of m from Xand predecessors of n from Yhave the same set of IDs.

Definition 7: For any meX and n€Y checkSuccessors(X,Y,m,n) condition is satisfied, if
successors of m from Xand successors of nfrom Yhave the same set of IDs.

Definition 8: inducedSubGraph(X, G) procedure returns induces subgraph of Xin G.

Procedure Tracebasedslice
INPUT: Pair of PDGs G1 (V1, E1), G2 (V2, E2)
OUTPUT: Maximum common subgraph of G1 and G2

1. matchedNodes1 € V1, matchedNodes2 S V2

2. matchedNodes1 « @, matchedNodes2 « @

3. noPredecessorl—{n€VI1:n hasn't predecessor}

4. noPredecessor2—{neV2:n hasn't predecessor}

5. continueMatching « true

6. while (continueMatching)

7. continueMatching— false

8 tempMatchingc V1 x V2

9. tempMatching— @

10. sortedNeighbours1< sortVertices (getPredecessors (V1, matchedNodes1))

11. sortedNeighbours2« sortVertices (getPredecessors (VZ, matchedNodesZ2))

12. tempMatching—makeCorrespondence(sortedNeighbours1, sortedNeighboursZ2)

13. sortedNeighbours1< sortVertices (getSuccessors (V1, matchedNodes1))

14. sortedNeighbours2 sortVertices (getSuccessors (VZ2, matchedNodesZ2))

15. tempMatching—tempMatchingU makeCorrespondence(sortedNeighboursl,

sortedNeighboursZ2)

16. iftempMatching is empty

17. tempMatching— makeOneCorrespondence (noPredecessorl,
noPredecessor?)

18 iftempMatching is not empty

19. continueMatching< true

20. forall (vl, v2) € tempMatching

21 if checkPredecessors(matchedNodes1, matchedNodesZ, v1, vZ) and
checkSuccessors(matchedNodes1, matchedNodesZ, v1, vZ2)

22. matchedNodes1 < matchedNodes1 U {v1}

23. matchedNodes2—matchedNodesZ U {vZ2}

24. return inducedSubGraph(matchedNodes1, G1), inducedSubGraph(matchedNodes_Z,
G2)

H. Aslanyan 69

After detecting the maximum common subgraph, the Tracebasedslice procedure returns the
common part of two functions. If it satisfies MN and MP, then the obtained results are saved and
visualized.

3.3 Visualization of Binary Code Clones

The last stage of the tool is visualization of clones. The purpose of the created graphical interface
is to demonstrate the assembler code of the obtained clones, the percentage of their similarity, the
corresponding graphs and maximum common subgraph (Fig. 3).

R Code Clenes Visualiser
choose Clones List File : libfreetype.idb File : libfreetype.idt. -Optiong—————
e s fhamejhayk releaseCCOtests/libfreetype.idb / freleaseCer </lib ype.idh - ShowPDG1:
1D : FNT_Size_Salect ID PLEF_ Slze Select ShowPDG 2:

[
| 1915110 1B-s 14757 TRA4 1.0k '_‘

20.1511-40-19-st-14757 788418
21.1511-1d-20-5t-1475778841 <k
22.1511-4d-21-st-14757TAE4 1.l
2315114 22-50-1475778841.ch
24.1511+d-23-st-14757 7R84 1.k
25.1511-d-24-5t-147577884 1.
Z6. 1511+ 25-5t- 1475778841 ¢k

27.1511-id-26-st-14757 TA84 1.l

2815112751147 5778841.¢h

| 30.1511-d-20-5E-14757 78842 ¢f
| 31.151140-30-51-1475778842 ¢}

32.1511-id-31-st14 757 TaS4 2.l

-

*253312 - push_[edi]

*253313: push_[esi]

*253314: push_[ebu]

*253315 - mov_[es],_ss_[esp_+_size]]
*253315: call [x86_get_pc_thunk_ba]
*253324: add_[ebx, 385652]

*253330 :sub_lesp, byte_8]

*253333: mov_[eax,_ds_Jesi]]

*253335 - mov_ledi,_ds;_[eax_+_1321]
253341 : push,_[byte_0]

253343 : push,_|eax]

*253344 - call_[FT_Select_Metrics]

253349 : maovzx_[eax, word_ds:_[edi_+_80]]
*253353: add_[esp._byte_16]

253356 mov_[edy,_aax]

#253358 :shi [edx, byte 6]

*253361 : mov_[ds:_[esi_+_24], e

*253364 - movzx_[edx,_ward ds [ed| +_96]]
253368 : sub_[ear,_eds]
*253370:shl_[eax,_byte 5]

*253373 : mov_[ds:_lesi_+_28],_eax]
*253376: movex_[eax, word_ds: fedi +_102]]
*253380:shi_[eax,_byte 6]

*253383 : mov_[ds:_lesi_+_36],_eax]
*253386: xor_[eax,_eax]

*253388: pop_[eba]

*253385: pop_[esi]

*253390: pop_[edi]

*2533%1: retn {1

258112 push_[edi]
*258113: push_fesi]

*258114: push_[eba]

*258115; mov_[es,_ss:_[esp_+ size]]
#258119: call [x86_get_pe_thunk_hx]
*258124; add_[%:massz]
#258130: sub_lesp, byte 8]
=258133: mav_fedi,_ds_[esi]]
258135 push_lss:_[esp + strike_index]]
258139 : push_[edi]

#258140 " call_[FT_Select_Metrics]
255145 : mov_leax, _ds:_[edi_+_204]]

258151 : add_[esp, byte_18]

#258154: shi_feax,_byte_6]

#258157 : mav_fds_[esi_+ 24],_eax]

258160 mov_{eax,_ds:_[edi_+ 208]]
258166 nag [ean]

=258168: shl_[eax, byte &]

258171 : maov_[ds:_[esi_+ 28], eax]

*258174: mowsx_feax, word_ds: [edi_»_238]]

*258181; shi_[eax,_byte 5]

258184 mov_[ds;_[esi_+_36],_eax]

*253187 : nor_[eax,_eax]

#258189: pop_[ebi]

#258190: pop_[esi]

258191 : pop_[edi]

258192 retn_[]

Fig. 3. Visualization of detected clones

Matched part 1-96 %
Matched part 2100 %
Simiarity - 34 %

4. Results

To assess the effectiveness of the tool, it is tested on various real projects. Two successive versions
are analyzed for each project. The tool analyzes the pairs of functions, which have the same name
in old and new versions of projects. As the same function most likely will change at a few
instructions in new version, then they should be clones. If the function is not changed, then they
should be clones of the second type. The target machine for testing is Intel i5, 4 cores, RAM - 16
GB. The results on several programs are shown in Table 1.

70 Effective and Accurate Binary Clone Detection

Table 1: Results

Binaries | Functions Detected | Detected

Version sizes count Analvze clones clones

Project name (MB) with the aly count count

time _ _

same (MP = (MP =

old | new | old | new name 50%) 90%)
grep 3.0 3.1 |0.74|0.74 308 10s 307 299

gdb 8.0 8.1 49 | 66 12707 6m 14s 11894 10683
findutils 441 | 442 | 11 | 11 484 12s 484 482
gcc 490 | 540 | 32 | 34 1041 50s 956 662
git 260 | 295 | 94 | 98 3257 1m 15s 3098 2627
bison 2.3 2.4 1.3 | 15 498 19s 498 497

5. Conclusion

In this paper, the main approaches for finding binary code clones are observed. Developed a
multiplatform, scalable tool that allows finding all three types of code clones. The results on real
world programs prove high accuracy and scalability of the tool.

References

[1] [Online]. Available: https://www.zynamics.com/binnavi.html
[2] [Online]. Available: https://www.zynamics.com/binnavi/manual/html/reil_language.htm

[3] S. Ducasse, M. Rieger and S. Demeyer, "A language independent approach for detecting
duplicated code,"” in Proceedings of the 15th International Conference on Software
Maintenance, pp. 109-118, 1999.

[4] T.Kamiya, S. Kusumoto and K. Inoue, "CCFinder: A multilinguistic tokenbased code
clone detection system for large scale source code," in IEEE Transactions on Software
Engineering, vol 28, no. 7, pp. 654-670, Jul 2002.

[5] I. Baxter, A. Yahin, L. Moura and M. Anna, "Clone detection using abstract syntax trees,"
in Proceedings of the 14th IEEE International Conference on Software Maintenance, pp.
368-377, 1998.

[6] R. Tairas and J. Gray, "Phoenix-based clone detection using suffix trees," in Proceedings
of the 44th Annual Southeast Regional Conference, pp. 679-684, 2006.

[7] L.Jiang, G. Misherghi, Z. Su and S. Glondu, "DECKARD : Scalable and accurate tree-
based detection of code clones,” in Proceedings of the 29th International Conference on
Software Engineering, pp. 96-105, 2007.

H. Aslanyan 71

[8] R. Komondoor and S. Horwitz, "Using slicing to identify duplication in source code," in
Proceedings of the 8th International Symposium on Static Analysis, pp. 40-56, 2001.

[9] J. Krinke, "Identifying similar code with program dependence graphs,” in Proceedings of
the 8th Working Conference on Reverse Engineering, pp. 301-309, 2001.

[10] M. Gabel, L. Jiang and Z. Su, "Scalable detection of semantic clones," in Proceedings of
30th International Conference on Software Engineering, pp. 321-330, 2008.

[11] S. Sargsyan, S. Kurmangaleev, A. Baloian and H. Aslanyan, "Scalable and Accurate
Clones Detection Based on Metrics for Dependence Graph," Mathematical Problems of
Computer Science, vol. 42, pp. 54-62, 2014.

[12] A. Avetisyan, S. Kurmangaleev, S. Sargsyan, M. Arutunian and A. Belevantsev, "LLVM
Based code clone detection framework," in 10th International Conference on Computer
Science and Information Technologies, pp. 100-104, 2015.

[13] S. Sargsyan, S. Kurmangaleev, A. Belevantsev and A. Avetisyan, "Scalable and accurate
code clone detection,” Programming and Computer Software, vol. 6, pp. 9-17, 2015.

[14] S. Sargsyan, S. Kurmangaleev, A. Belevantsev, H. Aslanyan and A. Baloian , "Scalable
tool for code clone detection based on semantic analysis of program,” Trudy. ISP RAS, vol.
1, pp. 39-50, 2015.

[15] J. Jang and D. Brumley, "Bitshred: Fast, scalable code reuse detection in binary code,"
CyLab, p. 28, 2009.

[16] B. H. Bloom, "Space/time trade-offs in hash coding with allowable errors,"
Communications of the ACM, pp. 422-426, 1970.

[17] A. Schulman, "Finding binary clones with opstrings function digests: Part 111, Dr. Dobb’s
Journal, pp. 56-61, 2005.

[18] M.E. Karim, A. Walenstein, A. Lakhotia and L. Parida, "Malware phylogeny generation
using permutations of code,” Computer Virology, pp. 13-23, 2005.

[19] D. Bruschi, L. Martignoni and M. Monga, "Code normalization for self-mutating
malware," IEEE Security & Privacy, pp. 46-54, 2007.

[20] A. Sabjarnsen, J. Willcock, T. Panas, D. Quinlan and Z. Su, "Detecting code clones in
binary executables,” in Proceedings of the 18th International Symposium on Software
Testing and Analysis, pp. 117-128, 20009.

[21] A. Andoni and P. Indyk, "Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions,” in 47th Annual IEEE Symposium on Foundations of
Computer Science , pp. 459-468, 2006.

[22] M. R. Farhadi, B. C. M. Fung, P. Charland and M. Debbabi, "BinClone: Detecting Code
Clones in Malware," in 2014 Eighth International Conference on, San Francisco, CA, pp.
78-87, 2014.

[23] T. Dullien, E. Carrera, S. Eppler and S. Porst, "Automated attacker correlation for
malicious code,” DTIC Document, 2010.

[24] Y. David and E. Yahav, "Tracelet-based code search in executables,” in Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and Implementation,
pp. 349-360, 2014.

[25] D. E. Krutz and E. Shihab, "CCCD: Concolic Code Clone Detection,” WCRE, 2013. D. E.
Krutz and E. Shihab, "CCCD: Concolic code clone detection,” 2013 20th Working
Conference on Reverse Engineering, Koblenz, 2013, pp. 489-490.

[26] https://www.hex-rays.com/products/ida.

72 Effective and Accurate Binary Clone Detection

[27] H. K. Aslanyan, S. F. Kurmangaleev, V. G. Vardanyan, M. S. Arutunian and S. S.
Sargsyan, "Platform-independent and scalable tool for binary code clone detection,” Trudy
ISPRAN/Proc. ISP RAS, vol. 1, no. 2, pp. 215-226, 2016.

Submitted 02.08.2017, accepted 23.11.2017.

Enlniwljut Ynnh Ynutibph wpynitwdtn b £&9gphwn npntind
2. Uupuiyul
Udthnthnid

Opwgpuyhtt wmywhnydwt dpwlnnubpp hwdwh wundbunid b mbnunppnid ko
npnowlh Yng, putth np tpwbp twhiptnpnid kb ogunuugnpsty twpuwy bu Enwé (nisnudp
Jud dwubwjh jnisnudp npyybu wyp jpugph inisdwi hhdp: Ujuntwdbkbwgthy, nw jupng
t hwtqtgul] wmwppbp vpupwjubph, hyybu twb twpbwuwt b Epynuwut Ynnkph
Ukdwugdwp: Unnh tdwbwnhy dwubpp (Ynhukp) Gpiniuu nnnid gunbne punhpp
nununwd £ wybkih Jhpwnebjh, bpp twpjpbwlu §ngp hwuwibh sk Fugh wyn, wuppbp
Abwthnpunipjniiubph pupwgpmd Yndwyhjjuwnnpp jupnn £ wuwwndgbub] Ynnh npny
dwubp b uwnbnst] Ynph Ynbukp, npnup gnmipnitt sniukt twpibwlwt Ynnpnid:
Bpyniwlut Ynnh nubbph hwynbwpbkpnidp jupng L ogunugnpéyt) Jumuwljup Yngh,
uhuynihl upowjukph, htnhtwluwht ppwyniiph powponnidubph hwynbwpbpdwt
hwdwp: ZnpJuénid putwplyynd b Epyniwfub Ynnbph hwyntwpbpdw gnjnipinit
niutgnn Ukpnnubpp b ubpjuyugynid E Epniujut Ynnh inuubph hwynbwpbpdwi tnp
Ubpnn: Uyt punugws k tptip hhdtwljw thnyiphg: Unwghtt thnip hhutiws k Binnavi
huwdwlwupgh Jypu b Junnignid b dpugph Jupujuébnipjut qpububtp jnipupubsnip
Epyniujut nruljghuygh hwdwp: Fpudubipp unbndynid k' hhdudbiny REIL (Reverse
Engineering Intermediate Language) Supunupwuybwnnipjniithg wuljwh 1kqyh Jpu: REIL
ubpyuyugnidp Juptkih £ unwbug vh puth fupunnupuybnnipniubph wubkdpiipubph
hwdwnp (x86, x86-64, ARM, MIPS, PPC), nputing wwywhnytiny gnpshph wmtjujunipiniup
Uniypbn Swpnwpuybinnpniihg: Bpypnpy thoygp hwypnbwpbpnid © - yntbp
twpjhuntd untnddws gpudutph hhdwt Jpu: Gpynt spwqph Yuwpudwébnipniuubph
gpudutph wpwdbjugny pughwunip Bupwgpudh hwyunbwpbpdwt hwudwp
wnwownlynd k puquuinpudwjhtt Unnnwplnn wignphpd: Gpponpn thoynud unnugqus
nutbkpp gnigunpynid B hbnwqu yEpnidnipjuts hwdwn:

H. Aslanyan 73
dPpPexkTBHOE U TOUHOE O0HAPYKEHUE KJIOHOB OMHAPHOI0 KOJAA
A. AcnansiH

AHHOTANUA

Pa3pabotumnku nporpaMMHOro odecredeHust 00bIYHO KOMUPYIOT U BCTABJISAIOT ONPEIEICHHbII
dbparMeHT KoJa, MOCKOJbKY MPEANOYUTAIOT KCIOIb30BaTh MPEABAPUTEIHHO HAMHCAHHOE
pelIeHNe WM YaCTUYHOE PEIICHHE B KAYECTBE OCHOBHI ISl pEIIeHUs cBoel mpobiembl. OqHAKO
9TO MOJKET MPUBECTH K Pa3IMYHBIM OIIMOKAaM, a TakKe YBEIMYHUTh pa3Mep HCXOJHOTO U
OounapHoro kona. Ilonck moxoxux 4acreil kKoaa (KJIIOHOB) B IBOMYHOM KOJIE CTaHOBUTCS Ooliee
MPUMEHHUMBIM, €CJIH UCXOJHBINA KO HepocTyIeH. KpoMe Toro, KoMnuisiTop Bo BpeMst pa3iIniHbIX
npeoOpa3oBaHUl MOXKET CKOMUPOBAThH HEKOTOPHIE YacTH KOJA M CO31aTh KIOHBI KOJIa, KOTOPBIX
HET B UCXOJHOM Koje. OOHapyKeHue KIOHOB OMHApHOTO KOJla MCIONb3YeTCs AJIsl HaXOXKJIEHUs
BPEIOHOCHOTO KOJa, TTOMCKA CEMAaHTHYECKHUX OIIMOOK, OOHAPYKEHUS HApYIICHHUS aBTOPCKHUX
npaB U T. A. B 3Toil craTthe 0OCYXKIAIOTCS CYLIECTBYIOIIME METOJbl OOHAPY>KEHUS KIOHOB
OMHApPHBIX KOJOB U BBOJUTCSI HOBBIM MeTOA MX oOHapyxkeHus. OH COCTOUT U3 TPEX OCHOBHBIX
stanoB. [lepBeiii 3Tanm ocHoBaH Ha miatdopme Binnavi m reHepupyer rpadnl 3aBHCHMOCTEH
IpOTpaMMBbl [T KaXKA0H ABOMYHOM (pyHKIMH. ['padbl co3matoTcsi HA OCHOBE HE3aBUCHUMOTO OT
matdopmsl si3eika REIL (Reverse Engineering Intermediate Language). IlpencraBnenne REIL
MOJJICP)KUBACTCS ISl HECKOJNBKUX apxuTekTyp (x86, x86-64, ARM, MIPS, PPC), uto
obOecreunBaeT HE3aBUCUMOCTh HWHCTPYMEHTAa OT IIE€JIEBOM apXUTEKTypbl. Btopoit srtam
oOHapyXMBaeT KJIOHBI Ha OCHOBE paHee co3laHHBIX rpados. [Ipeanaraercs mMOITMHOMUATHHBIN
SBPUCTHUECKUN aJTOPUTM JI HAXOXACHUS MaKCHUMalbHOro obmiero moarpada nByx rpados
3aBUCHUMOCTEH mporpamMMbl. Ha TpeTbeMm dTarme MonMydeHHbIE KIOHBI BHU3YATU3UPYIOTCS IS
pY4YHOTO aHATHU3a.

	References

