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Abstract

In this paper an implementation of encoding and decoding procedures for
double 1 error correcting optimal linear codes over rings Z, and Z, is presented.
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1. Introduction

Codes over finite rings, particularly over integer residue rings and their applications in coding
theory, have been studied for a long time. Errors happening in the channel are basically
asymmetrical; they also have a limited magnitude, and this effect is particularly applicable to
flash memories. There have been a couple of papers regarding the optimal 1 single error
correcting codes over the alphabet Z,, [1, 2]. Also there are some papers regarding the
construction of optimal double £1 error correcting codes [3, 4]. Here, we propose to construct
encoding and decoding algorithms for the optimal codes correcting double 1 errors. In [5]
you can see the construction of encoding and decoding procedures for the optimal linear code
(12, 8) over ring Zs, which was given by parity check matrix Hs:

111110123411
ho-l01 2342222211
5713 2 4 4 2 3 2 4 4 2 1 1)

111113 2 4 4 2 0 4

In this case the number of combinations for each code word that can be corrected is:

(1 + 12+ 2 + (12 choose 2) x4) = 289.
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Implementation of codes over large alphabets is much more difficult compared with small
alphabets. In this paper we construct encoding and decoding procedures for the codes (16,
12) and (20, 16) over rings Z, and Z,, which are developed in [4]. Using this codes we can
correct consequently 512 and 800 errors of type +1 in any vectors from Z, and Zy with
lengths 12 and 16 by adding only 4 parity check symbols.

2. Presentation of the Codes (16, 12) and (20, 16) over Rings Z, and Z,

In [4] you can see the construction of optimal linear codes over Rings Z, and Z, correcting
double +1 errors.

2.1Code (16, 12) over Ring Z,

Let a linear (16, 12) code over ring Z-, be given by the following parity check matrix H;:

11111110123 454611
H:6543210222222211
7714 3 6 6 3 42 43 6 6 3 4 2 1 6|

111111143 6 6 3 4 2 00

A linear code over ring Z, , with 12 information and 4 parity check symbols, given by the parity
check matrix H, can correct up to two errors of the type +1, because H, has a property
according to which all the syndromes resulting from adding and subtracting operations between
any two columns of the matrix H, are different (xhi £ hjand hi # hy).

This code is optimal in the sense that it has a minimal possible number of parity check symbols.
In this case the number of combinations for each code word that can be corrected is:

16 x2 + (16 choose 2) x4 = 512.

2.2 Code (20, 16) over Ring Z,

The parity check matrix Hq for an optimal linear code (20, 16) correcting double errors of the
type +1 over ring Z, has the following form:
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A linear code over ring Z, , with 16 information and 4 parity check symbols, given by the parity
check matrix Hq can correct up to two errors of the type +1.

This code is optimal too in the sense that it has a minimal possible number of parity check
symbols. In this case the number of combinations for each code word that can be corrected is:

(20%2 4+ (20 choose 2) *4) = 800.

In the next chapter we will construct encoding and decoding procedures for these two optimal
linear codes.
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3. Encoding and Decoding Procedures

3.1 Code (16, 12)

For encoding every message in Z, we must have the generator matrix G-. For this we should
construct a combinatorial equivalent matrix H', from parity check matrix H, of the code (16,
12):

100065 251525401161
g.- (01 0021550641460 4
7 001 00 0O0UO0OU416 5656 5 5|

000 115523113086 23

Here all syndromes will be different, too. We know the theorem, which says, that
if H = [—PT|I,_x], then G = [Ix|P] (the reverse statement is also true), where I, isak * k
identity matrix and Pisak * (n — k) matrix,

GH'T =0. (1)

Thus, we can construct the generator matrix G:

NNRFRPNNRFRPROWOOOO
QOO OO RrRrROOO O OO
QO OO RrROOOO O OO
S OO PR OO OO OO oo
SO RO OOOoOOoOOoO O OO
O R OO OO OO OO OO
R OO OO OO OO O oo

R OOONUIN O N U N
WO R WO WRONN O U
AR OB OO SUINNOG
coococoocococoococo o
cCcoococoocococoococoRr O
CoocococococOoOoOR OO
cCcoococoococooroOO
cCcoococoococoRrRroOoOO
cCoocococoRrRrROoOOOC OO

Encoding procedure:
In our scheme the message was presented by 12-tuples in Z,. v = (ay,a,,as, ..., a;2) IS an
arbitrary 12-tuple, and consider the vector u that is the linear combination of columns G-, with

a; is the i*" coefficient.
U =vG = (€q,Cy,C3,C4,aq1,0a5,0A3, ..., A12),

where the first 4 components of the code vector are the parity check symbols and the next 12
components are information symbols, where

¢; = (X1, aipij)mod7. (2)

Let us show the example to describe how we do these procedures.
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Example.

Let (01264065412 2) be the message vector in Z,. From (2) we can obtain parity check
symbols by multiplying this message vector with the columns of the matrix G.
For example, the first parity check symbol is c1:
c; = (0x2)+ (1*5)+ 2*2)+ (6x6)+ (4*2)+ (0+x5)+ (6*2)+ (5%0) +
4+6)+(1*x6)+ 2*1)+ 2*6)=0 +5+4+1+1+0+5+0+3+6+
2 +5 = 4(mod7).

(All operations are in Z-.)
Similarly, we can find other 3 parity check symbols:

c; =5 ¢3=3 ¢c,=1.

After performing other multiple operations with matrix G- we obtain this encoded vector:
(4531012640654 122). Aswe can see in this code, the encoded message (codeword)
has the length 16, from which the first 4 are parity check symbols, and the last 12 are
information symbols.

Decoding procedure:

Now we will show how a decoding procedure will be implemented using the parity check matrix
H',, if during the message sending process the errors occured in the codewords.
We will describe the decoding procedure by 3 steps:

1. Receiver multiplies the vector with every row of matrix H';, and gets the syndrome
S =vH'. If S = (0,0,0,0) then there were not any errors in the received vector.

2. If the calculated syndrome S is a nonzero vector, then there are some occurred errors.
These codes can correct only up to two errors with magnitude 1. We know that all
possible syndromes of matrix H'; are different (hi £ hjand h; # h;). After calculating the
syndrome the receiver knows from which two columns of the matrix H'; the syndrome
was resulted, consequently, it can find the two corresponding components of the vector,
where the error was occurred and the direction of the error (if +h;, then upward direction
or if —h; downward direction). On the other hand, if in the table of syndromes we do not
have the resulted syndrome, then we cannot correct this kind of errors.

3. After finding the error components the receiver adds or subtracts 1 from them
and obtains the sent code vector (cq,cy,C3,C4,a1,a5,a3,...,3213). SO (ay,a5,a3,...,312)
IS our message vector.

An example.

(4531012640654 122)isan encoded vector from the previous example. Let 2 errors
occur in the channel, and the receiver gets the vector (4521012640654 121). After
performing multiple operations with rows of matrix H’'; the receiver obtains the
syndrome(6 3 1 4). Next from the table of syndromes it finds the corresponding columns, now
they are 3 and 16. Hence, the syndrome (6 3 1 4) was resulted from adding a negated column 3
of matrix H'; to the negated column 16:

0 -1 -1

0 —4 _-4 _

1 -5 ~—_g (mod7) = (6314)
0 -3 =3

(Becausein Z, 0 =7, -1 =6, -2 =5, -3 =4, -5=2, -6 = 1).
Hence, the error positions of encoded vector are 3 and 16 (both have a downward direction).
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So, it adds 1 to the 3rd component and 1 to 16" of vector (4521012640654 12 1) and
obtains the sent encoded vector (4531012640654122).

Consequently, the message vector (code word) is (0126406541 22) as we have in the
example of the encoding procedure.

Using this code we can find and correct all possible 512 errors of the type +1 in every vector
over ring Z,.

3.2 Encoding and Decoding for the Code (20, 16)

For the code (20, 16) over the ring Z4 correcting double errors of the type +1 we can do the same
encoding and decoding processes as we did for the code (16, 12). In this case, the parity check
matrix H'q and the generator matrix G4 will have the following form:

H'y =
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Unlike the previous case for the code (16, 12) over ring Z,, in this case the message was
presented by 16-tuples in Z,. The encoded vector u (codeword) has a length 20:

U =06 = (€q,Cy,C3,C4,0a41,a5,0a3, ..., A1),

where the first four are the parity check symbols: ¢; = (¥, a;p;;)mod9 and the next 16 are
information symbols.

Using this code we can find and correct all possible 800 errors of the type +1 in every
vector over ring Z,.
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4. Conclusion

In this paper an implementation of encoding and decoding procedures of optimal (16, 12) and
(20, 16) linear codes over ring Z, and Z, correcting double +1 errors is presented. We propose
that this approach can be extended for implementation of similar procedures for the optimal codes
over other rings Z,, and the research in this direction will follow.
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Uj wpyniupubp wuhdbwnphly thnpp dEénipjudp ujpwubp
ninnnn Ynnkpny Ynpuynpldwi b wywlnpunpdwi
wgnphpdutph hudwp

Z. vuswnput
Udthnthnid

Uju hnnpjwéh opowtwljubpmid thpluyugdus G jnpuynpdwi b wywlnpuynpdw
wgnphpdubpp Z; b Zy onuljutipnid junnigdus wuhdbwnphly thnpp wdwyjhnniguynyg
upuwubip ninnnn Ynnbph hwdwp:
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AJIFOPHTMBI KOOHUPOBAHUSA U AEKOJUPOBAHUA AJI1 KOLOB
HUCIIPpaBJIAIOIINX aCHMMETPUYHBIE I[BOfIHBIe OIIMOKHU

I'. Xauarpsau

AHHOTaNuA

B naHHOH! crartbe NpeACTaBICHBI AITOPUTMBI KOAUPOBAHUSA U JCKOAUPOBAHMS NJIA KONOB B
KOJIbLAX Z7 U Zg UCTIPABIISIONINX ABOMHBIE aCUMMETPHYHBIC OITHOKH.
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