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Abstract
A theorem is proved including Dirac’s two well-known theorems (1952) as particular
cases.
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1. Introduction

We consider only undirected graphs with no loops or multiple edges. For a graph G, we use n
and ¢ to denote the order and the circumference (the order of a longest cycle) of G. A graph
G is hamiltonian if G contains a Hamilton cycle, that is a simple cycle C' with |C| = ¢ = n.
A good reference for any undefined terms is [1].

The earliest two nontrivial lower bounds for the circumference were developed in 1952
due to Dirac [2] in terms of minimum degree § and p - the order of a longest path in G,
respectively.

Theorem A: [2|. If G is a 2-connected graph, then ¢ > min{n,20}.
Theorem B: [2]. If G is a 2-connected graph, then ¢ > /2p.

In this paper we present a common generalization of Theorem A and Theorem B, includ-
ing both 4 and p in a common relation as parameters.
Theorem 1: If G is a 2-connected graph, then

D, when p <26,

c>{ p—1, when 20+1<p<3)—2,

\/zp—10+(6—g)2+6+§, when p > 35— 1.

Since G is 2-connected, we have n > 3. If p < 20, then by Theorem 1, ¢ > p, implying
that ¢ = p = n (G is hamiltonian) and ¢ = p > /2p. Next, if 20 + 1 < p < 3§ — 2, then by
Theorem 1, ¢>p—1. Sincep >26+1>5 wehavec>p—1>2andc>p—1> /2p.
Finally, if p > 36 — 1, then

7\? 7\ 2 1
J— _ — > J— J— —_ — = _ —
\/Zp 10 + ((5 2> > \/2(3(5 1) — 10+ ((5 2) ) 5
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implying that ¢ > 2§ (by Theorem 1) and

1 7\? 5
“V4/2p—1 — = 2 _ °
<6+2>\/p O—i—(é 2> +90 3(5—1—4

>(0+=)(0—2)+8=35+-=(5—-1)(26—-1) > 0.
(1+3) (-3) :

Observing that the inequality

1 ™? 5
<5+§>\/2p—10+<5—§> FO =354+ >0

is equivalent to

7\? 1
2p—10+<(5—§> +(5+§> 2p,

we conclude (by Theorem 1) that ¢ > /2p.

Thus, Theorem 1 yields Theorem A and is stronger than Theorem B.

To show that Theorem 1 is best possible in a sense, observe first that in general, p > c,
that is ¢ = p when p < 26, implying that the bound ¢ > p in Theorem 1 cannot be replaced
by ¢ > p+ 1. On the other hand, the graph Kss,1, where p =20+ 1and c =20 =p—1
shows that the condition p < 20 cannot be relaxed to p < 26 + 1. In addition, the graph
K541, where ¢ = p, shows that the bound ¢ > p —1 (when 26 + 1 < p < 36 — 2) cannot be
replaced by ¢ > p. Further, the graph Ky +3K;5_1, wheren=p=30—1land c =20 <p—2
shows that the condition p < 36 — 2 cannot be relaxed to p < 360 — 1. Finally, the same
graph Ky 4+ 3Ks_1, where p =30 — 1 and

7\? 1
c=20= 2p—10+<(5—§> +6+§,

shows that the bound \/Zp —10+ (6 — g)Q + 0+ % in Theorem 1 cannot be improved to

V20 =10+ (6 — 52+ 45+ 1.

For a special case when 20 +1 < p < 30 — 2, we use the result of Ozeki and Yamashita
3].
Theorem C: [3]. Let G be a 2-connected graph. Then either

(i))c>p—1or

(17) ¢ > 36 — 3 or

(13i) k =2 and p > 30 — 1.

2. Notation and Preliminaries

The set of vertices of a graph G is denoted by V(G) and the set of edges - by E(G). The
neighborhood of a vertex € V(G) will be denoted by N(x). We use d(z) to denote |N(x)|.

Paths and cycles in a graph G are considered as subgraphs of G. If () is a path or a cycle,
then the order of @, denoted by |Q], is |V (Q)]. We write a cycle ) with a given orientation

—

by 5 For z,y € V(Q), we denote by x @y the subpath of @ in the chosen direction from

x to y. For xz € V(Q), we denote the h-th successor and the h-th predecessor of z on 5
by 7" and x7", respectively. We abbreviate %! and 27! by z* and 27—, respectively. For



46 A Common Generalization of Dirac’s Two Theorems

UCV(Q), Ut ={utlueU}and U~ = {u"|u € U}. We say that vertex z; precedes vertex
Zo on 5 if 21, 2o occur on 5 in this order, and indicate this relationship by z; < 2. We
will write z; < %2 when either z; = 25 or z; < 29.

Let P =2 Py be a path. A vine on P is a set

H .
of internally-disjoint paths such that

(a) V(L))" V(P) ={zs,yi} (i=1,...,m),

D) x=x1 <2y <y 23 <Y 32y < . 2Ty < Ym_1 =Y =y on P.
The Vine Lemma: [4]. Let G be a k-connected graph and P a path in G. Then there are
k — 1 pairwise-disjoint vines on P.

The next three lemmas are crucial for the proof of Theorem 1.
Lemma 1: Let G be a connected graph and P = x?y a longest path in G.

(1) If vz,yz~— € E(G) for some z € V(x*?y), then ¢ = p = n, that is G is hamiltonian.

(i7) If d(z) + d(y) > p, then c =p = n.

(173) Let yz1,x2z9 € E(QG) for some 21,29 € V(P) with v < 21 < 29 <y and |21?22| > 3.
If xz,yz & E(G) for each z € V(zf?z;) and d(z) +d(y) > p+3 — |21?22|, then ¢ = p.
Lemma 2: Let G be a 2-connected graph and {Ly, Lo, ..., Ly, } be a vine on a longest path of

G. Then
2p — 10
>

— m+1

C

Lemma 3: Let G be a connected graph and {Ly, Lo, ..., L;,} be a vine on a longest path
N
P=xPy of G. Then either c=p orc>d(z)+d(y) +m—2.

3. Proofs

Proof of Lemma 1: (i) Let zz,yz~ € E(G) for some z € V(x*?y). Then ¢ >
— —

|tz Pyz~ Px| = p. If V(G) = V(P), then clearly ¢ = p. Otherwise, recalling that G is

connected, we can form a path longer that P, a contradiction.

(i7) Let d(x) + d(y) > p. If xz,yz~ € E(G) for some z € V(x*?y), then we can argue
as in (7). Otherwise N(z) N NT(y) = 0. Observing also that &€ N(z) U N*(y), we get

p = IN(@)[+ N ()] + {1}

= [N(@)[ + [N()[ + 1 =d(z) +d(y) + 1,

contradicting the hypothesis.
(i77) Assume the contrary, that is ¢ < p — 1. Then by (i), N(z) N N*(y) = 0. Clearly,
x & N(x)U N*(y). Further, by the hypothesis,

V(= Pz) 0 (N) UN*(y) =0,

implying that
H —
p = {a} +IN(@) + INT ()] + [V (P z)
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— d(x) + d(y) + |21 P | — 2,

contradicting the hypothesis. Thlﬁ), ¢ =p. Lemma 1 is proved. [
Proof of Lemma 2: Let P =2 Py be a longest path in G. Put

— . — —
L; = x; Ly (Z: 1,...,m), Ay =x1 Pxy, Ap = Ym-1 P Ym,

— —
Ai:yi—l P$i+1 (i:2,3,...,m—1), Bi:$i+1 Pyz (Z: 1,...,m—1),

By combining appropriate L;, A;, B;, we can form the following cycles:
x=UAulL,
i=1 i=1

m—1 m—1

Q2 = U A;UBy, 1 U U L,
i=1 i=1

QgZUAzUBlLJUL“

=2 =2
Rz‘ = Bz U Az‘_;,_l U Bz‘+1 U Lz‘+1 (Z = 1, e, — 2)

Since |L;| > 2 (i = 1,...,m), we have

c> || = Zai +Z(|Lz| —-1)> Zai+m7
i—1 i1 i—1

m—1 m—1 m—1

CZ|Q2|:bm—l+ Zaz‘i‘ Z(|Lz|—1)2bm_1—|—2az+m_1’

i=1 i=1 i=1
c > Qs :b1+zai+2(|[/i|—1) Zbl—i-Zai—l—m—l,
i=2 i=2 i=2
c > |R;| = b+ ajp1 + gy + |Liga| — 1
2bi+ai+1+bi+1+1 (Z:L,m—Z)

By summing, we get

m m—1 m—1
(m+1)c> (22%—1—22@) +2> a;+4m —4

=1 =1 =2

m—1

22(2@—}—2@—1—1)+4m—6—2p+4m—6,

i=1 i=1

implying that ) 10
> P

— m+1

C

Lemma 2 is proved. [ |
Proof of Lemma 3: If m = 1, then xy € E(G) and by Lemma 1(7), ¢ = p. Let m > 2.

—
Put Lz =T L iYi (Z = 1, ,m) and let

Aia B’ia g, b’i7 Q’L
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be as defined in the proof of Lemma 2.
Case 1: m = 2.

Assume without loss of generality that L; and Ly are chosen so as to minimize b;. This
means that N(z) U N(y) C V(A; U Ay). By Lemma 1(4i7), either ¢ = p or d(z) + d(y) <

—
p+2—1|z21 Pz =p—+1—0by. If ¢ = p, then we are done. Let d(z) +d(y) < p+ 1 — by, that
isp>d(x)+d(y)+b—1. Then p=a; +ay+ b +1>d(z) +d(y) + by — 1, implying that
c> | =a1+ay+2>d(z)+dy) =d(z) +dy) +m—2.

Case 2: m = 3.

Let xz1,yzy € E(G) for some z1, z5 € V(P). If 25 < 21 then {zz1,y25} is a vine consisting
of two paths (edges) and we can argue as in Case 1. Otherwise we have

N(z) CV(A;UA,), N(y) CV(AyU A3)
and z; < 2z, for each z; € N(x) and 25 € N(y). Therefore, a; +as+as > d(z) +d(y) — 2 and
c> Q1 =a1 +as+az+3
>d(z) +d(y) +1=d(z) +d(y) + m —2.

Case 3: m > 4.
Choose {Ly, ..., L,,} so as to minimize m. Then clearly

N(z) CV(A;UAy), N(y) CV(A,1UA,)
and z; < 2o for each z; € N(z) and 2z € N(y). Observing also that
ay + as > d(l’) — 1, Am—1 + Q> d(y) - 17

we get
c> Q1| :iai—Fm: (a1+a2+am_1+am)+mz_2ai+m
i=1 - =3
>d(z)+d(y) —2+ Y a;+m >d(z) +d(y) +m — 2.
Lemma 3 is proved. [ -

Proof of Theorem 1: Let P = x?y be a longest path in G.
Case 1: p < 20.

If zy € E(G), then by Lemma 1(3), ¢ = p. Let zy ¢ E(G). Then d(x) +d(y) > 26 > p
and by Lemma 1(ii), ¢ = p.
Case 2: 20+1<p<3)—2.

Ifc>30—3,thenec >p+2—-3=p—1. Next, if Kk =2 and p > 36 — 1, then
p>30—12>p+1, a contradiction. By Theorem C, ¢ > p — 1.
Case 3: p > 36 — 1.

Since G is 2-connected, there is a vine {L1, ..., L,,} on P. By Lemma 3, m < ¢ —d(z) —
d(y) +2 < c¢—26+ 2. Using Lemma 2, we get

S2=10 210

4
~ m+1 _0—2(5+3+ '
implying that
7\? 1
CZ\/Zp—10+<(5—§> Fo+3.

Theorem 1 is proved. ]
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Shpwyh Gpym pnptdtph pGnhwipugnid
4. UnutiyyjwG U d~. ‘Ghynnnujul

Udthnthnid

Uwuwgnigynid k& dh ptinptd, npl plngpynid £ 1952-h6 “thpwyh Ynnihg vnmwgywo tpynt
hwjwmGh pnptiGhpp npytiu dwulGuwynp nhwptp:

OO6o011eHre AByX TeopeM Aupaka
K. Mocecsa u 7K. Hukorocsiad

AnHoTanus

AOKa3bIBaeTCsd OAHA TeopeMa, KOTOpas BKAIOYAeT ABE U3BECTHBbIE TeOopeMBbl
Anpaka, moanydeHHble B 1952 1., Kak 4acTHBIE CAyYaH.



