A Common Generalization of Dirac's Two Theorems

Carlen M. Mosesyan¹ and Zhora G. Nikoghosyan^{2,*}

¹ Kh. Abovyan Armenian State University
 ² Institute for Informatics and Automation Problems of NAS RA e-mail: mosesyan@list.ru, zhora@ipia.sci.am

Abstract

A theorem is proved including Dirac's two well-known theorems (1952) as particular cases.

Keywords: Hamilton cycle, Longest cycle, Longest path, Minimum degree.

1. Introduction

We consider only undirected graphs with no loops or multiple edges. For a graph G, we use n and c to denote the order and the circumference (the order of a longest cycle) of G. A graph G is hamiltonian if G contains a Hamilton cycle, that is a simple cycle C with |C| = c = n. A good reference for any undefined terms is [1].

The earliest two nontrivial lower bounds for the circumference were developed in 1952 due to Dirac [2] in terms of minimum degree δ and p - the order of a longest path in G, respectively.

Theorem A: [2]. If G is a 2-connected graph, then $c \ge \min\{n, 2\delta\}$.

Theorem B: [2]. If G is a 2-connected graph, then $c \ge \sqrt{2p}$.

In this paper we present a common generalization of Theorem A and Theorem B, including both δ and p in a common relation as parameters.

Theorem 1: If G is a 2-connected graph, then

$$c \ge \begin{cases} p, & \text{when} \quad p \le 2\delta, \\ p-1, & \text{when} \quad 2\delta+1 \le p \le 3\delta-2, \\ \sqrt{2p-10+(\delta-\frac{7}{2})^2}+\delta+\frac{1}{2}, & \text{when} \quad p \ge 3\delta-1. \end{cases}$$

Since G is 2-connected, we have $n \geq 3$. If $p \leq 2\delta$, then by Theorem 1, $c \geq p$, implying that c = p = n (G is hamiltonian) and $c = p > \sqrt{2p}$. Next, if $2\delta + 1 \leq p \leq 3\delta - 2$, then by Theorem 1, $c \geq p - 1$. Since $p \geq 2\delta + 1 \geq 5$, we have $c \geq p - 1 \geq 2\delta$ and $c \geq p - 1 > \sqrt{2p}$. Finally, if $p \geq 3\delta - 1$, then

$$\sqrt{2p-10+\left(\delta-\frac{7}{2}\right)^2} \ge \sqrt{2(3\delta-1)-10+\left(\delta-\frac{7}{2}\right)^2} = \delta-\frac{1}{2},$$

^{*}G.G. Nicoghossian (up to 1997)

implying that $c \geq 2\delta$ (by Theorem 1) and

$$\left(\delta + \frac{1}{2}\right)\sqrt{2p - 10 + \left(\delta - \frac{7}{2}\right)^2} + \delta^2 - 3\delta + \frac{5}{4}$$

$$\geq \left(\delta + \frac{1}{2}\right)\left(\delta - \frac{1}{2}\right) + \delta^2 - 3\delta + \frac{5}{4} = (\delta - 1)(2\delta - 1) > 0.$$

Observing that the inequality

$$\left(\delta + \frac{1}{2}\right)\sqrt{2p - 10 + \left(\delta - \frac{7}{2}\right)^2} + \delta^2 - 3\delta + \frac{5}{4} > 0$$

is equivalent to

$$\sqrt{2p-10+\left(\delta-\frac{7}{2}\right)^2}+\delta+\frac{1}{2}>\sqrt{2p},$$

we conclude (by Theorem 1) that $c > \sqrt{2p}$.

Thus, Theorem 1 yields Theorem A and is stronger than Theorem B.

To show that Theorem 1 is best possible in a sense, observe first that in general, $p \geq c$, that is c = p when $p \leq 2\delta$, implying that the bound $c \geq p$ in Theorem 1 cannot be replaced by $c \geq p+1$. On the other hand, the graph $K_{\delta,\delta+1}$, where $p=2\delta+1$ and $c=2\delta=p-1$ shows that the condition $p \leq 2\delta$ cannot be relaxed to $p \leq 2\delta+1$. In addition, the graph $K_{\delta,\delta+1}$, where c=p, shows that the bound $c \geq p-1$ (when $2\delta+1 \leq p \leq 3\delta-2$) cannot be replaced by $c \geq p$. Further, the graph $K_2+3K_{\delta-1}$, where $n=p=3\delta-1$ and $c=2\delta \leq p-2$ shows that the condition $p \leq 3\delta-2$ cannot be relaxed to $p \leq 3\delta-1$. Finally, the same graph $K_2+3K_{\delta-1}$, where $p=3\delta-1$ and

$$c = 2\delta = \sqrt{2p - 10 + \left(\delta - \frac{7}{2}\right)^2} + \delta + \frac{1}{2},$$

shows that the bound $\sqrt{2p-10+(\delta-\frac{7}{2})^2}+\delta+\frac{1}{2}$ in Theorem 1 cannot be improved to $\sqrt{2p-10+(\delta-\frac{7}{2})^2}+\delta+1$.

For a special case when $2\delta + 1 \le p \le 3\delta - 2$, we use the result of Ozeki and Yamashita [3].

Theorem C: [3]. Let G be a 2-connected graph. Then either

- (i) $c \ge p 1$ or
- (ii) $c \geq 3\delta 3$ or
- (iii) $\kappa = 2$ and $p \ge 3\delta 1$.

2. Notation and Preliminaries

The set of vertices of a graph G is denoted by V(G) and the set of edges - by E(G). The neighborhood of a vertex $x \in V(G)$ will be denoted by N(x). We use d(x) to denote |N(x)|.

Paths and cycles in a graph G are considered as subgraphs of G. If Q is a path or a cycle, then the order of Q, denoted by |Q|, is |V(Q)|. We write a cycle Q with a given orientation by \overrightarrow{Q} . For $x, y \in V(Q)$, we denote by $x\overrightarrow{Q}y$ the subpath of Q in the chosen direction from x to y. For $x \in V(Q)$, we denote the h-th successor and the h-th predecessor of x on \overrightarrow{Q} by x^{+h} and x^{-h} , respectively. We abbreviate x^{+1} and x^{-1} by x^{+} and x^{-} , respectively. For

 $U \subseteq V(Q), U^+ = \{u^+ | u \in U\}$ and $U^- = \{u^- | u \in U\}$. We say that vertex z_1 precedes vertex z_2 on \overrightarrow{Q} if z_1 , z_2 occur on \overrightarrow{Q} in this order, and indicate this relationship by $z_1 \prec z_2$. We will write $z_1 \preceq z_2$ when either $z_1 = z_2$ or $z_1 \prec z_2$.

Let $P = x \overrightarrow{P} y$ be a path. A vine on P is a set

$$\{L_i = x_i \overrightarrow{L}_i y_i : 1 \le i \le m\}$$

of internally-disjoint paths such that

- (a) $V(L_i) \cap V(P) = \{x_i, y_i\}$ (i = 1, ..., m),
- (b) $x = x_1 \prec x_2 \prec y_1 \leq x_3 \prec y_2 \leq x_4 \prec ... \leq x_m \prec y_{m-1} \prec y_m = y \text{ on } P.$

The Vine Lemma: [4]. Let G be a k-connected graph and P a path in G. Then there are k-1 pairwise-disjoint vines on P.

The next three lemmas are crucial for the proof of Theorem 1.

Lemma 1: Let G be a connected graph and $P = x\overrightarrow{P}y$ a longest path in G.

- (i) If $xz, yz^- \in E(G)$ for some $z \in V(x^+ \overrightarrow{P}y)$, then c = p = n, that is G is hamiltonian.
- (ii) If $d(x) + d(y) \ge p$, then c = p = n.
- (iii) Let $yz_1, xz_2 \in E(G)$ for some $z_1, z_2 \in V(P)$ with $x \prec z_1 \prec z_2 \prec y$ and $|z_1 \overrightarrow{P} z_2| \geq 3$. If $xz, yz \notin E(G)$ for each $z \in V(z_1^+ \overrightarrow{P} z_2^-)$ and $d(x) + d(y) \geq p + 3 |z_1 \overrightarrow{P} z_2|$, then c = p. Lemma 2: Let G be a 2-connected graph and $\{L_1, L_2, ..., L_m\}$ be a vine on a longest path of G. Then

$$c \ge \frac{2p - 10}{m + 1} + 4.$$

Lemma 3: Let G be a connected graph and $\{L_1, L_2, ..., L_m\}$ be a vine on a longest path $P = x \overrightarrow{P}y$ of G. Then either c = p or $c \ge d(x) + d(y) + m - 2$.

3. Proofs

Proof of Lemma 1: (i) Let $xz, yz^- \in E(G)$ for some $z \in V(x^+\overrightarrow{P}y)$. Then $c \ge |xz\overrightarrow{P}yz^-\overleftarrow{P}x| = p$. If V(G) = V(P), then clearly c = p. Otherwise, recalling that G is connected, we can form a path longer that P, a contradiction.

(ii) Let $d(x) + d(y) \ge p$. If $xz, yz^- \in E(G)$ for some $z \in V(x^+ \overrightarrow{P}y)$, then we can argue as in (i). Otherwise $N(x) \cap N^+(y) = \emptyset$. Observing also that $x \notin N(x) \cup N^+(y)$, we get

$$p \ge |N(x)| + |N^+(y)| + |\{x_1\}|$$

$$= |N(x)| + |N(y)| + 1 = d(x) + d(y) + 1,$$

contradicting the hypothesis.

(iii) Assume the contrary, that is $c \leq p-1$. Then by (i), $N(x) \cap N^+(y) = \emptyset$. Clearly, $x \notin N(x) \cup N^+(y)$. Further, by the hypothesis,

$$V(z_1^{+2}\overrightarrow{P}z_2^-)\cap (N(x)\cup N^+(y))=\emptyset,$$

implying that

$$p \ge |\{x\}| + |N(x)| + |N^+(y)| + |V(z_1^{+2}\overrightarrow{P}z_2^-)|$$

$$= d(x) + d(y) + |z_1 \overrightarrow{P} z_2| - 2,$$

contradicting the hypothesis. Thus, c = p. Lemma 1 is proved.

Proof of Lemma 2: Let $P = x \overrightarrow{P} y$ be a longest path in G. Put

$$L_{i} = x_{i} \overrightarrow{L}_{i} y_{i} \quad (i = 1, ..., m), \quad A_{1} = x_{1} \overrightarrow{P} x_{2}, \quad A_{m} = y_{m-1} \overrightarrow{P} y_{m},$$

$$A_{i} = y_{i-1} \overrightarrow{P} x_{i+1} \quad (i = 2, 3, ..., m-1), \quad B_{i} = x_{i+1} \overrightarrow{P} y_{i} \quad (i = 1, ..., m-1),$$

$$|A_{i}| - 1 = a_{i} \quad (i = 1, ..., m), \quad |B_{i}| - 1 = b_{i} \quad (i = 1, ..., m-1).$$

By combining appropriate L_i, A_i, B_i , we can form the following cycles:

$$Q_{1} = \bigcup_{i=1}^{m} A_{i} \cup \bigcup_{i=1}^{m} L_{i},$$

$$Q_{2} = \bigcup_{i=1}^{m-1} A_{i} \cup B_{m-1} \cup \bigcup_{i=1}^{m-1} L_{i},$$

$$Q_{3} = \bigcup_{i=2}^{m} A_{i} \cup B_{1} \cup \bigcup_{i=2}^{m} L_{i},$$

$$R_{i} = B_{i} \cup A_{i+1} \cup B_{i+1} \cup L_{i+1} \quad (i = 1, ..., m-2).$$

Since $|L_i| \geq 2$ (i = 1, ..., m), we have

$$c \ge |Q_1| = \sum_{i=1}^m a_i + \sum_{i=1}^m (|L_i| - 1) \ge \sum_{i=1}^m a_i + m,$$

$$c \ge |Q_2| = b_{m-1} + \sum_{i=1}^{m-1} a_i + \sum_{i=1}^{m-1} (|L_i| - 1) \ge b_{m-1} + \sum_{i=1}^{m-1} a_i + m - 1,$$

$$c \ge |Q_3| = b_1 + \sum_{i=2}^m a_i + \sum_{i=2}^m (|L_i| - 1) \ge b_1 + \sum_{i=2}^m a_i + m - 1,$$

$$c \ge |R_i| = b_i + a_{i+1} + b_{i+1} + |L_{i+1}| - 1$$

$$\ge b_i + a_{i+1} + b_{i+1} + 1 \quad (i = 1, ..., m - 2).$$

By summing, we get

$$(m+1)c \ge \left(2\sum_{i=1}^{m} a_i + 2\sum_{i=1}^{m-1} b_i\right) + 2\sum_{i=2}^{m-1} a_i + 4m - 4$$

$$\ge 2\left(\sum_{i=1}^{m} a_i + \sum_{i=1}^{m-1} b_i + 1\right) + 4m - 6 = 2p + 4m - 6,$$

implying that

$$c \ge \frac{2p-10}{m+1} + 4.$$

Lemma 2 is proved.

Proof of Lemma 3: If m = 1, then $xy \in E(G)$ and by Lemma 1(i), c = p. Let $m \ge 2$. Put $L_i = x_i \overrightarrow{L}_i y_i$ (i = 1, ..., m) and let

$$A_i$$
, B_i , a_i , b_i , Q_i

be as defined in the proof of Lemma 2.

Case 1: m = 2.

Assume without loss of generality that L_1 and L_2 are chosen so as to minimize b_1 . This means that $N(x) \cup N(y) \subseteq V(A_1 \cup A_2)$. By Lemma 1(iii), either c = p or $d(x) + d(y) \le p + 2 - |z_1 \overrightarrow{P} z_2| = p + 1 - b_1$. If c = p, then we are done. Let $d(x) + d(y) \le p + 1 - b_1$, that is $p \ge d(x) + d(y) + b_1 - 1$. Then $p = a_1 + a_2 + b_1 + 1 \ge d(x) + d(y) + b_1 - 1$, implying that

$$c \ge |Q_1| = a_1 + a_2 + 2 \ge d(x) + d(y) = d(x) + d(y) + m - 2.$$

Case 2: m = 3.

Let $xz_1, yz_2 \in E(G)$ for some $z_1, z_2 \in V(P)$. If $z_2 \prec z_1$ then $\{xz_1, yz_2\}$ is a vine consisting of two paths (edges) and we can argue as in Case 1. Otherwise we have

$$N(x) \subseteq V(A_1 \cup A_2), \quad N(y) \subseteq V(A_2 \cup A_3)$$

and $z_1 \leq z_2$ for each $z_1 \in N(x)$ and $z_2 \in N(y)$. Therefore, $a_1 + a_2 + a_3 \geq d(x) + d(y) - 2$ and

$$c \ge |Q_1| = a_1 + a_2 + a_3 + 3$$

$$\ge d(x) + d(y) + 1 = d(x) + d(y) + m - 2.$$

Case 3: $m \ge 4$.

Choose $\{L_1, ..., L_m\}$ so as to minimize m. Then clearly

$$N(x) \subseteq V(A_1 \cup A_2), \quad N(y) \subseteq V(A_{m-1} \cup A_m)$$

and $z_1 \prec z_2$ for each $z_1 \in N(x)$ and $z_2 \in N(y)$. Observing also that

$$a_1 + a_2 \ge d(x) - 1$$
, $a_{m-1} + a_m \ge d(y) - 1$,

we get

$$c \ge |Q_1| = \sum_{i=1}^m a_i + m = (a_1 + a_2 + a_{m-1} + a_m) + \sum_{i=3}^{m-2} a_i + m$$

$$\ge d(x) + d(y) - 2 + \sum_{i=3}^{m-2} a_i + m \ge d(x) + d(y) + m - 2.$$

Lemma 3 is proved.

Proof of Theorem 1: Let $P = x \overrightarrow{P} y$ be a longest path in G.

Case 1: $p \leq 2\delta$.

If $xy \in E(G)$, then by Lemma 1(i), c = p. Let $xy \notin E(G)$. Then $d(x) + d(y) \ge 2\delta \ge p$ and by Lemma 1(ii), c = p.

Case 2: $2\delta + 1 \le p \le 3\delta - 2$.

If $c \geq 3\delta - 3$, then $c \geq p + 2 - 3 = p - 1$. Next, if $\kappa = 2$ and $p \geq 3\delta - 1$, then $p \geq 3\delta - 1 \geq p + 1$, a contradiction. By Theorem C, $c \geq p - 1$.

Case 3: $p \ge 3\delta - 1$.

Since G is 2-connected, there is a vine $\{L_1, ..., L_m\}$ on P. By Lemma 3, $m \le c - d(x) - d(y) + 2 \le c - 2\delta + 2$. Using Lemma 2, we get

$$c \ge \frac{2p-10}{m+1} + 4 \ge \frac{2p-10}{c-2\delta+3} + 4,$$

implying that

$$c \ge \sqrt{2p - 10 + \left(\delta - \frac{7}{2}\right)^2} + \delta + \frac{1}{2}.$$

Theorem 1 is proved.

References

- [1] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, Macmillan, London and Elsevier, New York, 1976.
- [2] G. A. Dirac, "Some theorems on abstract graphs", *Proc. London, Math. Soc.*, vol. 2, pp. 69-81, 1952.
- [3] K. Ozeki and T. Yamashita, "Length of longest cycles in a graph whose relative length is at least two", *Graphs and Combinatorics*, vol. 28, pp. 859-868, 2012.
- [4] J. A. Bondy, *Basic Graph Theory: Paths and circuits*, Handbook of Combinatorics, Elsevier, Amsterdam, vol. 1,2, 1990.

Submitted 01.07.2016, accepted 02.11.2016.

Դիրակի երկու թեորեմների ընդհանրացում

Կ. Մոսեսյան և Ժ. Նիկողոսյան

Ամփոփում

Ապացուցվում է մի թեորեմ, որն ընդգրկում է 1952-ին Դիրակի կողմից ստացված երկու հայտնի թեորեմները որպես մասնավոր դեպքեր։

Обобщение двух теорем Дирака

К. Мосесян и Ж. Никогосяан

Аннотация

Доказывается одна теорема, которая включает две известные теоремы Дирака, полученные в 1952 г., как частные случаи.