A Polynomial Algorithm for the Minimum Bandwidth of Interval Graphs

David H. Muradian

Institute for Informatics and Automation Problems of NAS RA e-mail: david.h.muradian@gmail.com

Abstract

Let G be a connected graph with vertex set X and edge set U. A layout of G is a one-to-one map φ from X onto $\{1, 2, \ldots, |X|\}$. The bandwidth of φ is $B_{\varphi}(G) = \max |\varphi(u) - \varphi(v)|$, where (u, v) ranges over all edges of G. The bandwidth of G, denoted by B(G), is defined as B(G) = $\min B_{\varphi}(G)$ where φ ranges over all layouts of G. Interval graphs are the intersection graphs of a family of intervals over the real line. In this paper we show that the Bandwidth Minimization problem for interval graphs can be solved in time $O(n\Delta^2\log(\Delta))$, where n is the vertex number and Δ is the maximal degree of vertex of the interval graph.

Keywords: Graph layout, Bandwidth, Interval Graphs.

1. Introduction

The bandwidth minimization problem for graphs was first stated in 1966 by Harper ([1]), where the problem was solved for hypercubes.

Finding the bandwidth of an arbitrary graph is an NP-complete problem ([2]) and it remains NP-complete for many simple structures, e.g., for cyclic caterpillars with hair length 1, graphs in which the removal of all pendant vertices results in a simple cycle ([3]).

There are only few classes of graphs for which an efficient solution (i.e., a polynomial algorithm or analytic result) to the bandwidth problem is known. Classes of graphs the bandwidth of which can be computed efficiently are butterflies ([4]), chain graphs ([5]), caterpillars with hair length at most 2 ([6]). Another nontrivial class, for which the problem was solved efficiently, is the class of interval graphs, graphs which are the intersection graphs of a family of intervals over the real line.

The first polynomial algorithm for interval graphs was given in 1986 by the author ([7]). It was published in the Reports of NAS RA, where the algorithm is described in detail, and besides a brief proof of its correctness is given. Since this result was obtained independently and published in the following years ([8], [9], [10]), we consider it reasonable to publish the full proof of our algorithm's correctness.

2. Preliminaries

Let G be a connected graph with vertex set X and edge set U. A numbering of G is a one-to-one map φ from X onto $\{1, 2, \ldots, |X|\}$. The bandwidth of φ is $B_{\varphi}(G) = \max |\varphi(u) - \varphi(v)|$, where (u, v) ranges over all edges of G. The bandwidth of G, denoted by G, is defined as G is defined as G, where G ranges over all numberings of G. Length of an edge G is defined as G is def

Given a graph G(X, U) and its some layout φ . Let's define a new layout $\varphi_{A,B}$ – swap of two disjoint subsets A and B of X as follows. If A and B are disjoint subsets of vertices of G, at that for any $x \in A$ and $y \in B$ we have $\varphi(x) < \varphi(y)$ and $\max_{z \in B} \varphi(z) - \min_{z \in A} \varphi(z) = |A| + |B| - 1$, then

$$\varphi_{A,B}(z) = \begin{cases} \varphi(z)/z \in X \setminus (A \cup B) \\ \varphi(z) + |B|/z \in A \\ \varphi(z) - |A|/z \in B \end{cases}$$

Let's denote $X_{\varphi}[k, l] = \{x \in X/k \le \varphi(x) \le l\}$ for $1 \le k \le l \le n$.

Let's consider an interval graph G = (X, U). Let's denote by \hat{x} an interval corresponding to the vertex $x \in X$. We say that an interval $\hat{x} = (a, b)$ is entirely on the left side (right side) of an interval $\hat{y} = (c, d)$ if b < c (correspondingly a.d. Let's denote by $\Gamma^{-}(\hat{x})$ ($\Gamma^{+}(\hat{x})$) the set of intervals which entirely are on the left side (correspondingly - on the right side) of \hat{x} .

Let's define a layout φ_0 for the graph G. For any vertices $x, y \in X$ if $\Gamma^-(\hat{x}) = \Gamma^-(\hat{y})$ and $\Gamma^+(\hat{x}) = \Gamma^+(\hat{y})$, then $\varphi_0(x) < \varphi_0(y)$ or $\varphi_0(x) > \varphi_0(y)$. Otherwise, $\varphi_0(x) < \varphi_0(y)$ if and only if $\Gamma^-(\hat{x}) \subset \Gamma^-(\hat{y})$ or $\Gamma^-(\hat{x}) = \Gamma^-(\hat{y})$ but $\Gamma^+(\hat{x}) \subset \Gamma^+(\hat{y})$.

It is easy to check that ϕ_0 is well-defined by the above conditions and has the following properties.

- 1. If \hat{x} is entirely on the left side of \hat{y} , then $\varphi_0(x) < \varphi_0(y)$. It is obvious by the definition.
- 2. If $1 \le i < j \le n$ and the vertices $x = \varphi_0^{-1}(i)$, $y = \varphi_0^{-1}(j)$ are adjacent, then x is adjacent to any vertex $z = \varphi_0^{-1}(k)$, where $i < k \le j$. Really, let's assume that x, z are not adjacent. Then \hat{x} is entirely on the left side of \hat{z} . The vertices z, y should be adjacent, otherwise as x, y are adjacent, then \hat{y} should be entirely on the left side of \hat{z} and therefore should have a smaller number in the layout φ_0 . If z, y are adjacent, then again \hat{y} should have a smaller number than \hat{z} because $\Gamma^-(\hat{y}) \subset \Gamma^-(\hat{z})$ (at least on account of \hat{x}), which leads to a contradiction.
- 3. Let x and y be vertices for which we have $\Gamma^-(\hat{y}) \subset \Gamma^-(\hat{x})$ and $\Gamma^+(\hat{y}) \subset \Gamma^+(\hat{x})$. Then two disjoint intervals exist, one of which is entirely on the left side and the other entirely on the right side of \hat{x} and both are overlaps with \hat{y} . It is obvious by definition.

Let \hat{x} , \hat{y} , $\hat{z_1}$ and $\hat{z_2}$ be intervals where $\hat{z_1}$ is entirely on the left side of \hat{x} and $\hat{z_2}$ - entirely on the right side of \hat{x} and all of them overlap with \hat{y} . Then we will say that \hat{x} is a proper interval for \hat{y} and record this fact as $x \subset y$.

For any vertex $x \in X$, we will name $\varphi_0(x)$ as its index.

D. Muradian 75

3. Algorithm

Step i (i \geq 1). At step i the algorithm having as an input the layout $\varphi = \varphi_{i-1}$, creates a layout φ_i or stops, claiming that B(G) > K.

Let y be a vertex with the greatest number at φ , which is incident to an edge with a length above K, and let (x,y) have the greatest length among them (i.e., y is not adjacent to vertices, the numbers of which are less than $\varphi(x)$). Then the algorithm tries to find a vertex with the smallest number from $X_{\varphi}[\varphi(x) + 1, \varphi(y) - 1]$, which is not adjacent to y. If such vertex does not exist, then it claims that B(G) > K.

Let z be the sought-for vertex. Let's denote $M = X_{\varphi}[\varphi(x), \varphi(z) - 1]$. Let a_j be a vertex from the set $M \setminus X_{\varphi}[\varphi(a_{j-1}), \varphi(z) - 1]$ having the greatest index there (with an agreement, that $X_{\varphi}[\varphi(a_0), \varphi(z) - 1] = \emptyset$). Denote $S_j = X_{\varphi}[\varphi(a_j) + 1, \varphi(a_{j-1}) - 1]$. Note that for some j-s sets S_j may be empty. The layout φ_i is defined as follows:

$$\varphi_i(a) = \begin{cases} \varphi_{i-1}(x)/\alpha = z \\ \varphi_{i-1}(a)/a \in \bigcup_j S_j \cup (X \setminus (M \cup \{z\})) \\ \varphi_{i-1}(a) + 1 + |S_j|/a = a_j \end{cases}$$

In other words φ_i is obtained from φ_{i-1} via successive swaps: $(M,\{z\})$, $(\{a_1\},S_1)$, $(\{a_2\},S_2)$, ... Then the algorithm checks if there is an edge with the length above K at φ_i . If not, then it stops, claiming that φ_i is the sought-for layout with the bandwidth no more than K. If yes, then the algorithm turns to the step i+1.

4. Proof of the Algorithm's Correctness

Let's define a class of layouts Φ_0 for the graph $G: \varphi \in \Phi_0$ if and only if for any vertices a and b, for which $\varphi(a) < \varphi(b)$ and $\varphi_0(a) > \varphi_0(b)$, will take place $a \subset b$.

From the definition of Φ_0 it follows immediately that for any $\varphi \in \Phi_0$ and two non-adjacent vertices x and y, if $\varphi_0(x) < \varphi_0(y)$, then $\varphi(x) < \varphi(y)$. It is easy to see that $\varphi_0 \in \Phi_0$. Moreover, the algorithm, beginning with φ_0 , never leaves the class Φ_0 .

Lemma 1: $\varphi_i \in \Phi_0$ in each step i.

Proof: We will prove the statement by induction. For i=0 the statement obviously is true, let it be true for each step until i-1. Let's show that $\varphi_i \in \Phi_0$. Then it is sufficient to show that $z \subset q$ any $q \in M$, and $a_t \subset q_t$ for all $q_t \in S_t$.

Since $(q,y) \in U$ and $(z,y) \notin U$, then naturally q cannot be a proper interval for z, and by the fact that $\varphi_{i-1} \in \Phi_0$, we will have $\varphi_0(q) < \varphi_0(z)$. But as $\Gamma^+(\hat{q}) \subset \Gamma^+(\hat{z})$, it follows immediately that $\Gamma^-(\hat{q}) \subset \Gamma^-(\hat{z})$, i.e., $z \subset q$. Then the layout obtained by the swap of M and $\{z\}$ certainly belongs to Φ_0 , and therefore, $a_t \subset q_t$ for all $q_t \in S_t$. This proves the lemma.

In the next two lemmas several new properties of the layout φ_i are proved.

Lemma 2: In the step i, the length of the edge (x,y) decreases by 1 and none of vertices from $X_{\varphi_i}[\varphi_i(y)+1,n]$ is incident to an edge with the length above K.

Proof: By Lemma 1 we have $z \subset x$, and z together with x don't have adjacent vertices in $X_{\varphi_i}[\varphi_i(y) + 1, n]$. Therefore, there is no vertex from $X_{\varphi_i}[\varphi_i(y) + 1, n]$, incident to an edge with length above K. Now we will show that the length of the edge (x, y) decreases exactly by 1. If

not, then denoting $= \varphi_{i-1}^{-1}(\varphi_{i-1}(x)+1)$, we will have $x \subset u$. By definition u doesn't have adjacent vertices in $X_{\varphi_{i-1}}[\varphi_{i-1}(y)+1,n]$. Let j be the greatest number, for which $\varphi_j(u) < \varphi_j(x)$ and $\varphi_{j+1}(u) > \varphi_{j+1}(x)$. It is clear that $j \leq i-2$. In the sub-step j+1 some set U swaps with $\{x\}$, where ueU, at that there exists a vertex v, which is not adjacent to x, but is adjacent to all vertices from U, and therefore, $v \in X_{\varphi_{i-1}}[\varphi_{i-1}(y)+1,n]$. Obtained contradiction proves the lemma.

Lemma 3: *Let vertices* a *and* b *satisfy the conditions*:

$$\varphi_i(a) < \varphi_i(b) \text{ and } \varphi_0(a) > \varphi_0(b).$$
 (1)

Then there are vertices D and d, such that:

$$D \in X_{\varphi_i}[\varphi_i(a) + 1, \varphi_i(b)]$$
 and $\varphi_i(d) - \varphi_i(D) \ge K$, (2)

Proof: We will prove the statement by induction. For i=0 the statement obviously is true, let it is true from 1 to i-1 step inclusive. Consider the step i. Denote $M_1=X_{\varphi_{i-1}}[1,\varphi_{i-1}(x)-1]$ and $M_2=X_{\varphi_{i-1}}[\varphi_{i-1}(z)+1,n]$.

We will show, that if for some vertices a and b conditions (1) are fulfilled, then there should exist vertices D' and d' which satisfy the conditions (2).

The only possible case, when $\varphi_{i-1}(a) > \varphi_{i-1}(b)$ can hold when a = z and $b \in M$. In this case vertices x and y can be taken instead of D and d. Really, any vertex from M is adjacent to d = y and $\varphi_i(d) - \varphi_i(D) = \varphi_i(y) - \varphi_i(x) \ge K$. In other cases $\varphi_{i-1}(a) < \varphi_{i-1}(b)$.

Let's analyze possible cases.

Case 1. $b \in M_1$.

Then $a \in M_1$. Since at the step i only the numbers of vertices from $M \cup \{z\}$ can be changed, then at $d' \in M_1 \cup M_2$ taking D = D' and d = d', it is easy to see that for D and d at φ_i conditions (2) are fulfilled. If d' = z, then from the fact that $z \subset q$ for any $q \in M$, it follows that each vertex from $X_{\varphi_{i-1}}[\varphi_{i-1}(D'), \varphi_{i-1}(b)]$ is adjacent to each vertex from M. Note that some vertex from M receives the number $\varphi_{i-1}(z)$ at φ_i . Then taking D = D' and $d = \varphi_i^{-1}(\varphi_{i-1}(z))$, one can observe, that for D and d conditions (2) will be fulfilled. If $d \in M$, then as $\varphi_i(q) \ge \varphi_{i-1}(q)$ for each $q \in M$, we will have $\varphi_i(d') - \varphi_i(D') \ge \varphi_{i-1}(d') - \varphi_{i-1}(D')$ and we can take D = D' and d = d'

Case 2. b = z.

Then $a \in M_1$. If $D' \in M_1$, then we will put D = D' and d = d' and if $D' \in M$, then D = b = z and d = d'. Then from the fact that $z \subset q$ for each $q \in M$, it follows that for D and d at φ_i conditions (2) are fulfilled.

Case 3. $b \in M \cup M_1$.

At first let's assume that for any vertex from $X_{\varphi_{i-1}}[\varphi_{i-1}(x), \varphi_{i-1}(b) - 1]$ occurs $\varphi_0(q) < \varphi_0(b)$. Then $a \in M_1$. If $b \in M$, then in place of D one can take the vertex x and in place of d vertex y, i.e., all vertices from M are adjacent to y. If $b \in M_2$ and $D' \in M_2$, then during the transition from φ_{i-1} to φ_i , nothing is changed for a and b, therefore we can take D = D' and d = d'. Let $b \in M_2$ and $D' \in M$. Since z is adjacent to d', then all vertices from M will be adjacent to d', and one can take D = z (certainly only after receiving the number $\varphi_{i-1}(x)$ by z) and D = D'.

Now let q be a vertex from $X_{\varphi_{i-1}}[\varphi_{i-1}(x), \varphi_{i-1}(b) - 1]$, the index of which is greater than the index of b, and let c be the vertex with the greatest number among them at φ_{i-1} .

Let $b \in M_2$. Then $\in M_2 \cup \{z\}$. Really, if $c \in M$, then from $z \subset c$ we will have $\varphi_0(z) > \varphi_0(c)$ and therefore $-\varphi_0(z) > \varphi_0(b)$, which will be at odds with the selection of c. But if $c \in M_2 \cup \{z\}$, then at φ_{i-1} there are D' and d', satisfying (2), at that $D' \in M_2$, and as their

D. Muradian 77

numbers are not changed during the transition from φ_{i-1} to φ_i , then one can take D=D' and d=d'.

Let $b \in M$. If $a \in M_1$, then one can take D = x and d = y. Let $a \in M$. Let's analyze the step i. The inequality $\varphi_i(a) < \varphi_i(b)$ means that at φ_{i-1} there was a vertex c, such that $\varphi_{i-1}(a) < \varphi_{i-1}(c') < \varphi_{i-1}(b)$, whereas at $\varphi_i : \varphi_i(c') > \varphi_i(b)$, i.e., the vertex was belonging to some nonempty set S_r , and $c = a_r$. Therefore, considering the pair of vertices (c', b) at φ_{i-1} , by the inductive conjecture there are vertices D' and D' are the lemma.

Before proving that the algorithm stops without creating a layout with the bandwidth K only on graphs having the bandwidth above K, we will define a graph called a generalized 1-caterpillar.

Definition: Let A_i, V_i $(i \in \overline{1,m})$ be disjoint sets and $A_i \neq \emptyset$ for all $(i \in \overline{1,m})$. A graph H = (F,E) with the set of vertices $F = \bigcup_{i=1}^m A_i \cup \bigcup_{i=1}^m V_i$ is called a generalized 1-caterpillar if $(x,y) \in E$ if and only if $x \in V_i$, $y \in A_i$ $(i \in \overline{1,m})$, or $x \in A_i$, $x \in A_{i+1}$ $(i \in \overline{1,m-1})$, or $x,y \in A_i$ $(i \in \overline{1,m})$.

Lemma 4: If the number of vertices of the graph H is more than $(m+1)(K+1) - \sum_{i=1}^{m} A_i$, then B(H) > K.

Proof: Let p be the number of vertices of H and $p > (m+1)(K+1) - \sum_{i=1}^{m} A_i$. Let's assume that $B(H) \le K$. Let φ be a layout with the smallest bandwidth for H, and without losing generality, let's assume that $\varphi^{-1}(1) \in A_i \cup V_i$ and $\varphi^{-1}(p) \in A_j \cup V_j$ at some $i, j \ (1 \le i \le j \le m)$.

Using the assumption B(H) \leq K, it is easy to prove the following statement: if $z_1 \in A_t$ for some t, and z_2 – vertex from A_{t+1} with the smallest number, then $\varphi(z_2) \leq \varphi(z_1) + K - |A_{t+1}| + 1$.

Solving this recurrent inequalities we will obtain that if z is a vertex from A_j with the smallest number, then $\varphi(z) \leq (j-i+1)(K+1) - \sum_{t=i}^{j} |A_t| + 1$. But z is adjacent to $\varphi^{-1}(p)$, therefore

$$K \ge p - \varphi(z) > (m+1)(K+1) - \sum_{t=1}^{m} |A_t| - (j-i+1)(K+1) + \sum_{t=i}^{j} |A_t| = (m-j+i)(K+1) - \sum_{t=1}^{m} |A_t| - \sum_{t=j+1}^{m} |A_t| - 1.$$

Besides $|A_t| \le K + 1$ for all $t \in \overline{1, m}$, therefore:

 $K \ge p - \varphi(z) > (m - j + i)(K + 1) - (m - j + i - 1)(K + 1) - 1 = K$, which leads to a contradiction. This proves the lemma.

Now we will state the last necessary property of layouts from Φ_0 .

Lemma 5: Let $\varphi \in \Phi_0$ and let u_1, u_2, u_3 be vertices with the following properties: $\varphi(u_1) < \varphi(u_2) < \varphi(u_3)$, $(u_1, u_3) \in U$ and $\varphi_0(u_2) < \varphi_0(u_3)$. Then $(u_1, u_2) \in U$.

Proof: Let's assume that u_1, u_2 are not adjacent. Then from $\varphi(u_1) < \varphi(u_2)$ we will have $\varphi_0(u_1) < \varphi_0(u_2)$. But $(u_1, u_3) \in U$ and therefore $\Gamma^-(\widehat{u_3}) \subset \Gamma^-(\widehat{u_3})$ and $\varphi_0(u_3) < \varphi_0(u_2)$, which contradicts the conditions of the lemma. This proves the lemma.

Theorem: If the algorithm at some step stops without creating for the graph G a layout with bandwidth K, then B(G) > K.

Proof: Let's assume that the situation described in the formulation of the theorem occurs at step i+1: each vertex from $X_{\varphi_i}[\varphi_i(x), \varphi_i(y)]$ is adjacent to y. If there is no any vertex among them, the index of which is greater than $\varphi_0(y)$, then by Lemma 5, the subgraph induced by the set $X_{\varphi_i}[\varphi_i(x), \varphi_i(y)]$ is a clique with the vertex number over K+1 and therefore B(G) > K.

Let's assume that there is a vertex in $X_{\varphi_i}[\varphi_i(x), \varphi_i(y) - 1]$, the index of which is greater than $\varphi_0(y)$ and let a_1 have the greatest number among them. Denote $b_1 = y$. Then for a_1 and b_1 conditions (1) are fulfilled and therefore there exist vertices D_1 from $X_{\varphi_i}[\varphi_i(a_1) + 1, \varphi_i(b_1)]$ and b_2 , such that $\varphi_i(b_2) - \varphi_i(D_1) \ge K$ and all vertices from $X_{\varphi_i}[\varphi_i(D_1), \varphi_i(b_1)]$ are adjacent to b_2 . Denote $R_0 = X_{\varphi_i}[\varphi_i(x), \varphi_i(D_1) - 1]$ and $A_1 = X_{\varphi_i}[\varphi_i(D_1), \varphi_i(b_1)]$.

Then let a_2 be the vertex with the greatest number from $X_{\varphi_i}[\varphi_i(b_1)+1,\varphi_i(b_2)]$, the index of which is equal or greater than $\varphi_0(b_2)$ (equality of indices is understood as a simple coincidence: $a_2=b_2$). Let $a_2\neq b_2$. Then a_2,b_2 satisfy the conditions (1) and therefore there exist vertices D_2 from $X_{\varphi_i}[\varphi_i(a_2)+1,\varphi_i(b_2)]$ and b_3 , for which the conditions (2) are fulfilled (after taking $D=D_1,d=b_3$ in (2)). Denote $R_1=X_{\varphi_i}[\varphi_i(b_1)+1,\varphi_i(D_2)-1]$ and $A_2=X_{\varphi_i}[\varphi_i(D_2),\varphi_i(b_2)]$.

Let's continue this procedure. As the graph is finite, then the sets A_1, A_2, \ldots, A_m and R_0, R_1, \ldots, R_m will be obtained, such that $R_j = X_{\varphi_i} [\varphi_i(b_j) + 1, \varphi_i(D_{j+1}) - 1]$ at $m \ge 1$, $A_j = X_{\varphi_i} [\varphi_i(D_j), \varphi_i(b_j)]$ at $j \in \overline{1, m}$, at that $\varphi_i(b_j) - \varphi_i(D_{j-1}) \ge K$ ($j \in \overline{1, m+1}$, $D_0 = x$), every vertex from A_j is adjacent to b_{j+1} ($j \in \overline{1, m}$), every vertex from R_0 is adjacent to b_1 and there are no vertices in R_0 , the indices of which are above $\varphi_0(b_{m+1})$.

From Lemma 5 we know that every vertex from R_0 is adjacent to every vertex from A_1 , every vertex from A_j is adjacent to every vertex from A_{j+1} (j $\epsilon \overline{1, m-1}$) and every vertex from A_m is adjacent to every vertex from R_m .

Let u be an arbitrary vertex from R_j (j $\epsilon \overline{1,m-1}$). We will show, that if u is not adjacent to any vertex from A_j (A_{j+1}), then it is adjacent to all vertices from A_{j+1} (correspondingly: A_j), where j $\epsilon \overline{1,m-1}$). Really, assume the contrary: $u_1 \epsilon A_j$, $u_2 \epsilon A_{j+1}$ and both are adjacent to u. From $\varphi_i(u) < \varphi_i(u_2)$ we have $\varphi_0(u) < \varphi_0(u_2)$. Then applying Lemma 5 to the triple u_1, u_2, u_3 , we will get that u_1 is adjacent to u, which leads to a contradiction. Therefore every vertex $u \epsilon R_j$ (j $\epsilon \overline{1,m-1}$) is adjacent to all vertices of at least one of the sets A_j, A_{j+1} .

Let V_1 be a set consisting of all vertices of R_0 and those vertices from R_1 , which are adjacent to all vertices of A_1 . Let V_j be a set consisting of all vertices of $R_{j-1} \setminus V_{j-1}$ and those vertices from R_j , which are adjacent to all vertices of A_j (j $\in \overline{1, m-1}$), and $V_m = (R_{m-1} \setminus V_{m-1}) \cup R_m$. It is easy to see that the graph G contains as a subgraph a generalized 1-caterpillar satisfying the conditions of Lemma 4. This proves the theorem.

5. Estimation of Algorithm Complexity

From the definition of φ_0 and its second property we have $B_{\varphi_0}(G) \leq \Delta - 1$, where Δ is the maximal degree of vertices. On the other hand we have a trivial lower bound:

$$B_{\varphi_0}(G) \ge B(G) \ge \left|\frac{\Delta}{2}\right|$$
. Therefore $\left|\frac{\Delta}{2}\right| \le B(G) \le \Delta - 1$.

First we will estimate the running time of the step i. The vertex z can be found checking |M| vertices and |M| elementary operations are sufficient for the swap of sets $(M,\{z\})$ (for the assignment of numbers). The rest part of the step i, i.e., the problem of finding vertices a_j as well as realization of swaps $(\{a_i\}, S_i)$ is equivalent to one pass of known bubble algorithm, and

D. Muradian 79

therefore will require no more than |M| comparisons of indices and |M| operations for the reassignments of numbers. Therefore the step i will require O(|M|) elementary operations. As the vertex set M forms a clique (the corresponding intervals contain the interval \hat{z}), then $|M| \leq K + 1$. Besides the length of the edge (x, y) no more than 2K, because $\left\lfloor \frac{\Delta}{2} \right\rfloor \leq K \leq \Delta - 1$. So, in order to decrease the length of the edge (x, y) to K no more than K steps are needed. Therefore, to achieve a situation where y is not adjacent to an edge with length over K, $O(K^2)$ elementary operations are sufficient. Finally, due to the fact that $\left\lfloor \frac{\Delta}{2} \right\rfloor \leq K \leq \Delta - 1$, the bandwidth minimization problem for an interval graph with number of vertices n and with maximal vertex degree Δ , can be solved using $O(\Delta^2 n \log_2 \Delta)$ elementary operations.

References

- [1] L. H. Harper, "Optimal numberings and isoperimetric problems on graphs", *Journal of Combinatorial Theory*, vol.1, no. 3, pp. 385–393, 1966.
- [2] C. Papadimitriou, "The NP-completeness of the bandwidth minimization problem", *Computing*, vol. 16, pp. 263-270, 1976.
- [3] D. Muradian, "The bandwidth minimization problem for cyclic caterpillars with hair length 1 is NP-complete", *Theoretical Computer Science*, "Selected Papers in Honour of Lawrence Harper", vol. 307, no. 3, pp. 567-572, 2003.
- [4] Y.-L. Lai, Bandwidth, edgesum and profile of graphs. Ph.D. thesis, Dept. of Computer Science, Western Michigan Univ, 1997.
- [5] T. Kloks, D. Kratsch and H. Muller, "Bandwidth of chain graphs", *Information Processing Letters*, vol. 68, no. 6, pp. 313-315, 1998.
- [6] S. F. Assman, Peck et al., "The bandwidth of caterpillars with hair of length 1 and 2", SIAM Journal on Algebraic and Discrete Methods, vol. 2, pp. 387-393, 1981.
- [7] Д. О. Мурадян, "Полиномиальный алгоритм для нахождения минимаксных нумераций графов интервалов", *Академия Наук Арм. ССР*, в. 82, pp. 64-66, 1986.
- [8] D. Kleitman and R. Vohra, "Computing the bandwidth of interval graphs", *SIAM J. Discrete Math.*, vol. 3, no. 3, pp. 373-375, 1990.
- [9] R. Mahesh, C. P. Rangan and A. Srinivasan, "On finding the minimum bandwidth of interval graphs", *Information and Computation*, vol. 95, no. 2, pp. 218-224, 1991.
- [10] A. P Sprague, "An $O(n \log n)$ algoritm for bandwidth of interval graphs", SIAM Journal on Discrete Mathematics, vol. 7, no. 2, pp. 213-220, 1994.

Submitted 21.07.2016, accepted 24.10.2016.

Պոլինոմիալ բարդությամբ ալգորիթմ ինտերվալ գրաֆների բարձրությունը գտնելու համար

Դ. Մուրադյան

Ամփոփում

Դիցուք G-ն կապակցված գրաֆ է X գագաթների և U կողերի բարձրությամբ։ Յուրաքանչյուր փոխմիարժեք φ համապատասխանություն, որ գագաթների X բազմությունը արտապատկերում է $\{1,\,2,\,\ldots,\,|X|\}$ բազմության վրա, կոչվում է G գրաֆի համարակալում։ $B_{\varphi}(G)=\max |\varphi(u)-\varphi(v)|$ թիվը, որտեղ մաքսիմումը վերցվում է ըստ գրաֆի բոլոր կողերի, սահմանվում է որպես φ համարակալման բարձրություն։ G գրաֆի բարձրությունը սահմանվում է որպես $B(G)=\min B_{\varphi}(G)$, որտեղ մինիմումը վերցվում է ըստ գրաֆի բոլոր համարակալումների։ Ինտերվալ գրաֆը սահմանվում է որպես թվային առանցքի վրա տրված ինտերվալների ինչ-որ ընտանիքի հատումների գրաֆ։

Աշխատանքում բերվում է ինտերվալ գրաֆների բարձրությունը գտնող պոլինոմիալ բարդությամբ ալգորիթմ։ Ալգորիթմն ունի $O(n\Delta^2\log(\Delta))$ բարդություն, որտեղ ո-ը գրաֆի գագաթների քանակն է, իսկ Δ -ն՝ գագաթների մեծագույն աստիձանը։

Алгоритм полиномиальной сложности для нахождения высоты графов интервалов

Д. Мурадян

Аннотация

Пусть G=(X, U) — граф со множеством вершин X и ребер U. Каждое взаимнооднозначное отображение $\varphi: X \to \{1, 2, ..., |X|\}$ назовем его нумерацией. При этом число $|\varphi(x) - \varphi(y)|$ назовем длиной ребра (x,y), а числа $B_{\varphi}(G) = \max_{(x,y) \in U} |\varphi(x) - \varphi(y)|$ и $B(G) = \min_{\varphi} B_{\varphi}(G)$, где минимум берется по всевозможным нумерациям графа G, соответственновысотой нумерации φ и графа G. Граф интервалов определяется как граф пересечений семейства интервалов данных на числовой прямой.

В настоящей работе приводится алгоритм полиномиальной сложности для нахождения высоты произвольного графа интервалов. Алгоритм имеет сложность $O(n\Delta^2log(\Delta))$, где n- количество вершин, а $\Delta-$ максимальная степень вершин графа.