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Abstract

Let G be a connected graph with vertex set X and edge set U. A layout of G is a
one-to-one map ¢ from X onto {1, 2, . . ., [X[}. The bandwidth of ¢ is B, (G) = max
| o(u) — @(v)|, where (u, v) ranges over all edges of G. The bandwidth of G, denoted
by B(G), is defined as B(G) = minB,(G) where ¢ ranges over all layouts of G.
Interval graphs are the intersection graphs of a family of intervals over the real line. In
this paper we show that the Bandwidth Minimization problem for interval graphs can
be solved in time O(nAzlog(A)), where n is the vertex number and A is the maximal
degree of vertex of the interval graph.
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1. Introduction

The bandwidth minimization problem for graphs was first stated in 1966 by Harper ([1]), where
the problem was solved for hypercubes.

Finding the bandwidth of an arbitrary graph is an NP-complete problem ([2]) and it remains
NP-complete for many simple structures, e.g., for cyclic caterpillars with hair length 1, graphs in
which the removal of all pendant vertices results in a simple cycle ([3]).

There are only few classes of graphs for which an efficient solution (i.e., a polynomial
algorithm or analytic result) to the bandwidth problem is known. Classes of graphs the
bandwidth of which can be computed efficiently are butterflies ([4]), chain graphs ([5]),
caterpillars with hair length at most 2 ([6]). Another nontrivial class, for which the problem was
solved efficiently, is the class of interval graphs, graphs which are the intersection graphs of a
family of intervals over the real line.

The first polynomial algorithm for interval graphs was given in 1986 by the author ([7]). It
was published in the Reports of NAS RA, where the algorithm is described in detail, and besides
a brief proof of its correctness is given. Since this result was obtained independently and
published in the following years ([8], [9], [10]), we consider it reasonable to publish the full
proof of our algorithm’s correctness.
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2. Preliminaries

Let G be a connected graph with vertex set X and edge set U. A numbering of G is a one-to-one
map ¢ from X onto {1, 2, .. ., | X[}. The bandwidth of ¢ is B,,(G¢)= max | ¢(u) — ¢ (v)|, where
(u, v) ranges over all edges of G. The bandwidth of G, denoted by B(G), is defined as B(G) =
min B, (G), where ¢ ranges over all numberings of G. Length of an edge (u, v) is defined as
) — o).

Given a graph G (X, U) and its some layout ¢. Let’s define a new layout ¢, 5 — swap of two
disjoint subsets A and B of X as follows. If A and B are disjoint subsets of vertices of G, at that
for any x € A and y € B we have ¢(x) < ¢(y) and I;leaBXgo(z) — I;}El}s p(z) = |A| +|B| — 1,

then

@(z)/ z € X\(AU B)
0ap(2) =< @)+ |Bl/z€ A
o(z) — |Al/z € B

Let’s denote X, [k,I] = {x € X/k < p(x) < [} for1 <k<1<n.

Let’s consider an interval graph G = (X, U). Let’s denote by X an interval corresponding to
the vertex x € X. We say that an interval X = (a, b) is entirely on the left side (right side) of an
interval § = (¢,d) if b < ¢ (correspondingly a.d. Let’s denote by I' (%) (I'* (%)) the set of
intervals which entirely are on the left side (correspondingly - on the right side) of x.

Let’s define a layout ¢, for the graph G. For any vertices x,y € X if '~ () = I'"(¥) and

() =T* (), then go(x) < @o(y) O @o(x) > @o(¥). Otherwise, po(x) < ¢o(y) if and
onlyifr-()cr-@orr-x) =r-@) butrt) cr+@.

It is easy to check that ¢, is well-defined by the above conditions and has the following
properties.

1. If X is entirely on the left side of J, then ¢, (x) < @o(y). It is obvious by the definition.

2. If 1 <i<j<nand the vertices x = @5(i), vy = @5 1(j) are adjacent, then x is adjacent
to any vertex z = @' (k), where i<k <j. Really, let’s assume that x, z are not adjacent.
Then x is entirely on the left side of Z. The vertices z, y should be adjacent, otherwise as
x,y are adjacent, then ¥y should be entirely on the left side of Z and therefore should have
a smaller number in the layout ¢,. If z, y are adjacent, then again ¥ should have a smaller
number than Z because I' (§) c I' " (2) (at least on account of %), which leads to a
contradiction.

3. Let x and y be vertices for which we have I' () c I' (%) and I'* () c I'*(%). Then
two disjoint intervals exist, one of which is entirely on the left side and the other —
entirely on the right side of X and both are overlaps with 9. It is obvious by definition.

Let X, y, Z; and Z, be intervals where Z; is entirely on the left side of X and Z, - entirely on
the right side of & and all of them overlap with §. Then we will say that X is a proper interval
for 9 and record this fact as x < y.

For any vertex x € X, we will name ¢, (x) as its index.
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3. Algorithm

Step i (1> 1). At step i the algorithm having as an input the layout ¢ = ¢;_,, creates a layout ¢;
or stops, claiming that B(G) > K.

Let y be a vertex with the greatest number at ¢, which is incident to an edge with a length
above K, and let (x,y) have the greatest length among them (i.e., y is not adjacent to vertices,
the numbers of which are less than ¢(x)). Then the algorithm tries to find a vertex with the
smallest number from X, [¢(x) + 1, ¢(y) — 1], which is not adjacent to y. If such vertex does
not exist, then it claims that B(G) > K.

Let z be the sought-for vertex. Let’s denote M = X,,[¢(x), p(2) — 1]. Let a; be a vertex

from the set M\X, [¢(a;_1), ¢(2) — 1] having the greatest index there (with an agreement, that
X,lp(ao), ¢(2) — 1] = @). Denote S; = X, [¢(a;) + 1,¢(a;_;) — 1]. Note that for some j-s
sets S; may be empty. The layout ¢; is defined as follows:

pi—1(x)/a=1z
pi(@) =< @;_1(a)/a € U;S; U (X\(M U {z}))
Q1@ +1+ |Sj|/a =q;

In other words ¢; is obtained from ¢;_, via successive swaps: (M,{z}), ({a,},S;), ({a,},S,), ...
Then the algorithm checks if there is an edge with the length above K at ¢;. If not, then it stops,
claiming that ¢; is the sought-for layout with the bandwidth no more than K. If yes, then the
algorithm turns to the step i + 1.

4. Proof of the Algorithm’s Correctness

Let’s define a class of layouts @, for the graph G: ¢ € @, if and only if for any vertices a and b,
for which @ (a) < @(b) and ¢@y(a) > @,(b), will take place a < b.

From the definition of &, it follows immediately that for any ¢ € @, and two non- adjacent
vertices x and vy, if @o(x) < @o(y), then ¢@(x) < @(y). It is easy to see that ¢, € ®,.
Moreover, the algorithm, beginning with ¢, never leaves the class @,,.

Lemma 1: @; € ®, in each step i.

Proof: We will prove the statement by induction. For i = 0 the statement obviously is true, let it
be true for each step until i — 1. Let’s show that ¢; € ®,. Then it is sufficient to show that z < q
any q € M,and a; < q, forall g, € S;.

Since (q,¥) € U and (z,y) € U, then naturally g cannot be a proper interval for z, and by
the fact that ¢;_, € ®,, we will have ¢,(q) < @,(z). But as I't(§) c Ir'*(2), it follows
immediately that ' (§) c I'"(2), i.e., z € q. Then the layout obtained by the swap of M and
{z} certainly belongs to @, and therefore, a, < g, forall q; € S;. This proves the lemma.

In the next two lemmas several new properties of the layout ¢; are proved.

Lemma 2: In the step i, the length of the edge (x,y) decreases by 1 and none of vertices from
Xy [0i(y) + 1,7n] is incident to an edge with the length above K.

Proof: By Lemma 1 we have z € x, and z together with x don’t have adjacent vertices in
Xy:[0i(y) + 1,n]. Therefore, there is no vertex from X, [¢;(y) + 1,n], incident to an edge with

i

length above K. Now we will show that the length of the edge (X, y) decreases exactly by 1. If
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not, then denoting = ¢; % (¢;_1(x) + 1) , we will have x < u. By definition u doesn’t have
adjacent vertices in X, [¢;_1(y) +1,n]. Let j be the greatest number, for which ¢;(u) <
pj(x) and @j(w) > @;1(x). Itis clear that j < i-2. In the sub-step j+1 some set U swaps
with {x}, where ueU, at that there exists a vertex v, which is not adjacent to x, but is adjacent to
all vertices from U, and therefore, veX,, _[@;_1(y) + 1,n]. Obtained contradiction proves the
lemma.

Lemma 3: Let vertices a and b satisfy the conditions:

@i(a) < @;(b) and @q(a) > @y(b). 1)
Then there are vertices D and d, such that:
DeX, [pi(a) +1,¢;(b)] and ¢;(d) — ¢;(D) = K, (2

Proof: We will prove the statement by induction. For i = 0 the statement obviously is true, let it
is true from 1 to i-1 step inclusive. Consider the step i. Denote M; = X,,. [1,¢;_4(x) — 1] and
MZ = X(pi_l [(pi—l(z) + 1,77,].

We will show, that if for some vertices a and b conditions (1) are fulfilled, then there
should exist vertices D’ and d’ which satisfy the conditions (2).

The only possible case, when ¢;_;(a) > ¢;_,(b) can hold when a = z and beM. In this case
vertices x and y can be taken instead of D and d. Really, any vertex from M is adjacentto d = y
and ¢;(d) — ¢;(D) = ¢;(y) — ¢;(x) = K. In other cases ¢;_1(a) < ¢;_1(b).

Let’s analyze possible cases.

Case 1. beM;.

Then aeM,. Since at the step i only the numbers of vertices from M U {z} can be changed,
then at d’eM; U M, taking D = D" and d = d’, it is easy to see that for D and d at ¢; conditions
(2) are fulfilled. If d' = z, then from the fact that z € q for any geM, it follows that each vertex
from X, [@i—1(D"), ;-1 (b)] is adjacent to each vertex from M. Note that some vertex from M
receives the number ¢;_;(z) at ¢;. Then taking D = D' and d = <pl-_1((pi_1(z)), one can
observe, that for D and d conditions (2) will be fulfilled. If d'eM, then as ¢;(q) = @;_,(q) for
each geM, we will have ¢;(d") — ¢;(D') = ¢;_1(d) — ¢;_1(D') and we can take D = D’ and
d=d'

Case 2. b = z.

Then aeM,. If D' € M;, then we willput D =D' and d =d" andif D' € M, then D =
b =zand d = d’. Then from the fact that z € q for each g € M, it follows that for D and d at
@; conditions (2) are fulfilled.

Case3.h € M U M;.

At first let’s assume that for any vertex from X,,.  [¢;_1(x), 9;—1(b) — 1] occurs ¢,(q) <
@o(b). Then aeM,. If b € M, then in place of D one can take the vertex x and in place of d -
vertex y, i.e., all vertices from M are adjacent to y. If b € M, and D' € M,, then during the
transition from ¢;_; to ¢;, nothing is changed for a and b, therefore we can take D = D’ and
d=d.lLetbe M, and D' € M. Since z is adjacent to d’, then all vertices from M will be
adjacent to d’, and one can take D = z (certainly only after receiving the number ¢;_,(x) by z)
and D =D’.

Now let g be a vertex from X,,.  [¢;_1(X), ¢;_1(b) — 1], the index of which is greater than
the index of b, and let c be the vertex with the greatest number among them at ¢;_;.

Let b € M,. Then € M, U {z} . Really, if c € M, then from zcc¢ we will have
©o(z) > @y(c) and therefore — ¢,(z) > ¢,(b), which will be at odds with the selection of c.
But if ceM2u{z}, then at ¢,_, there are D' and d’, satisfying (2), at that D’ € M,, and as their



D. Muradian 77

numbers are not changed during the transition from ¢;_; to ¢;, then one can take D = D' and
d=d'

Letb e M. Ifa € M;,thenone cantake D = xand d =y.Leta € M. Let’s analyze the
step i. The inequality ¢;(a) < ¢;(b) means that at ¢;_, there was a vertex ¢, such that
@;_1(a) < @;_1(c) < @;_1(b), whereas at ¢; : ¢;(c’) > ¢;(b) , i.e., the vertex was belonging
to some nonempty set Sy, and ¢’ = ar. Therefore, considering the pair of vertices (¢, b) at ¢;_,
by the inductive conjecture there are vertices D' and d’, satisfying (2), the numbers of which are
not changed during the transition from ¢;_; to ¢;, i.e.,, one cantake D = D' and d = d'. This
proves the lemma.

Before proving that the algorithm stops without creating a layout with the bandwidth K only
on graphs having the bandwidth above K, we will define a graph called a generalized 1-
caterpillar.

Definition: Let 4; V; (i € 1,m) be disjoint sets and Ai # @ for all (i € 1,m). A graph H = (F,E)
with the set of vertices F = Uj%; A; U UL, V; is called a generalized 1-caterpillar if (x,y)eE if
and only if x € V;, y € 4; (i € 1,m), orxeAl , X €Ay, (E1,Mm—1), orx,y€A; (i €
1,m).

Lemma 4: If the number of vertices of the graph H is more than (m + 1)(K + 1) — X%, A4;,
then B(H) > K.

Proof: Let p be the number of vertices of H and p > (m + 1)(K + 1) — X1, A;. Let’s assume
that B(H) < K. Let ¢ be a layout with the smallest bandwidth for H, and without losing
generality, let’s assume that ¢ ~'(1) € 4; UV; and ¢~ '(p) €A; UV, atsome i,j (1<i<j<
m).

Using the assumption B(H) < K, it is easy to prove the following statement: if z;€A; for
some t, and z, — vertex from A,,., with the smallest number, then ¢(z,) < ¢(z;) + K —
|[Aga] + 1.

Solving this recurrent inequalities we will obtain that if z is a vertex from A; with the

smallest number, then (z2) < G —i+ DK+ 1) — Z{zilAtl + 1. But z is adjacent to ¢ ~1(p),
therefore

m j
KZp—<p(z)>(m+1)(K+1)—Z|At|—(j—i+1)(K+1)+Z|At|=

(m—j+0DK+1)— ZIAI— z 14| - 1.

t=j+1

Besides |A;| < K + 1 forall tel, m,therefore:
Kzp—p@>m—-j+DK+1)—-(m—-—j+i—-1)(K+1)—-1=K,
which leads to a contradiction. This proves the lemma.

Now we will state the last necessary property of layouts from @,,.

Lemma 5: Let ped®, and let u;,u,,u; be vertices with the following properties: ¢(u,) <
P(uz) < @(usz), (uy,u3)el and @q(uz) < @o(uz). Then (uy, uy)el.

Proof: Let’s assume that u,,u, are not adjacent. Then from ¢(u;) < ¢@(u,) we will have
©o(uy) < @o(uy). But (uy,u3)eU and therefore I' (uz) c I' (uz) and  @q(us) < @o(u,),
which contradicts the conditions of the lemma. This proves the lemma.

Theorem: If the algorithm at some step stops without creating for the graph G a layout with
bandwidth K, then B(G) > K.



78 A Polynomial Algorithm for the Minimum Bandwidth of Interval Graphs

Proof: Let’s assume that the situation described in the formulation of the theorem occurs at step
i+1: each vertex from X, [p;(x), »;(y)] is adjacent to y. If there is no any vertex among them,
the index of which is greater than ¢,(y), then by Lemma 5, the subgraph induced by the set
Xy [0i(x), 9;(¥)] is a clique with the vertex number over K+1 and therefore B(G) > K.

Let’s assume that there is a vertex in X,, [¢;(x), ¢;(y) — 1], the index of which is greater
than ¢,(y) and let a; have the greatest number among them. Denote b; = y. Then for a; and
b, conditions (1) are fulfilled and therefore there exist vertices D1 from X, [¢;(a;) + 1, ;(b;)]
and b, , such that ¢;(b,) — @;(D;) = K and all vertices from X, [¢;(D,), p;(b,)] are adjacent
to b,. Denote Ry = X, [9;(x), 9;(Dy) — 1] and A; = X, [9:(Dy), i (b1)].

Then let a, be the vertex with the greatest number from X, [¢;(b;) + 1, ¢;(b)], the index
of which is equal or greater than ¢,(b,) (equality of indices is understood as a simple
coincidence: a, = b,). Let a, # b,. Then a,, b, satisfy the conditions (1) and therefore there
exist vertices D2 from X, [¢p;(az) + 1,¢9;(b;)] and bs, for which the conditions (2) are
fulfilled (after taking D = D;,d = b3 in (2)). Denote R; = X, [@;(by) + 1, ¢;(D;) — 1] and
Ay = X(pi[(pi(DZ)’ @i(b2)].

Let’s continue this procedure. As the graph is finite, then the sets A;,4,,...,4,, and
Ro,Ry, ..,Ryy, Will be obtained, such that R; =X, [¢;(b;)+1,¢;(Djs1) —1]atm =1,
Aj = X, [0:(D;), 9:i(b;)] at j €1, m, atthat ¢;(b;) — 9;(D;—1) = K (j €1, m + 1, D, = x), every
vertex from A; is adjacentto b;,; (j €1,m), every vertex from R, is adjacent to b, and there are
no vertices in R, , the indices of which are above @,(b;,41)-

From Lemma 5 we know that every vertex from R, is adjacent to every vertex from A,,
every vertex from A; is adjacent to every vertex from A4;,; (j €1,m — 1) and every vertex from
A,, i1s adjacent to every vertex from R,,.

Let u be an arbitrary vertex from R; (j €1, m — 1). We will show, that if u is not adjacent to
any vertex from A; (4;,,), then it is adjacent to all vertices from A;,; (correspondingly: 4;),
where j €1,m — 1). Really, assume the contrary: u,€A;, u,eA;,; and both are adjacent to u.
From ¢;(u) < ¢;(u,) we have ¢y (u) < @,(u,). Then applying Lemma 5 to the triple
Uy, Uy, uz, We will get that u, is adjacent to u, which leads to a contradiction. Therefore every
vertex ueR; (j €1,m — 1) is adjacent to all vertices of at least one of the sets A;, 4;. ;.

Let /; be a set consisting of all vertices of R, and those vertices from R;, which are
adjacent to all vertices of A;. Let V; be a set consisting of all vertices of R;_;\V;_; and those

vertices from R;, which are adjacent to all vertices of 4; (j €1,m — 1), and V, = (Ryy—1\Vpn—1) U

R,,. It is easy to see that the graph G contains as a subgraph a generalized 1-caterpillar satisfying
the conditions of Lemma 4. This proves the theorem.

5. Estimation of Algorithm Complexity

From the definition of ¢, and its second property we have B, (G) <A — 1, where A is the
maximal degree of vertices. On the other hand we have a trivial lower bound:

Bpo(6) = B(G) = |5| . Therefore || < B(6) <A - 1.

First we will estimate the running time of the step i. The vertex z can be found checking |M|
vertices and |M| elementary operations are sufficient for the swap of sets (M,{z}) (for the
assignment of numbers). The rest part of the step i, i.e., the problem of finding vertices a; as well
as realization of swaps ({a;},S;) is equivalent to one pass of known bubble algorithm, and
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therefore will require no more than |M| comparisons of indices and |M| operations for the
reassignments of numbers. Therefore the step i will require O(|M|) elementary operations.
As the vertex set M forms a clique (the corresponding intervals contain the interval 2), then

[M| < K + 1. Besides the length of the edge (X, y) no more than 2K, because EJ <K<A-1.

So, in order to decrease the length of the edge (x,y) to K no more than K steps are needed.
Therefore, to achieve a situation where y is not adjacent to an edge with length over K, 0(K?)

elementary operations are sufficient. Finally, due to the fact that EJ < K < A — 1, the bandwidth

minimization problem for an interval graph with number of vertices n and with maximal vertex
degree A, can be solved using 0(A%nlog, A) elementary operations.
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Unihtmihuy puppmpjup wignphped htwntpyun gpudtbkph
pupdpnipiniip gunikint hudwnp

. Unipunjui
Udthnthmd

“Yhgnip G-u juwuwlgdws qpud k£ X ququpubph b U Ynntph pwpdpnipjudp:
Snipwpwiynip thnjudhwpdtp ¢ hwdwywunwupwinipniy, np ququpubph X
puqunipniip wpnwyunkpmd £ {1, 2, . . ., [X|} puqunipjut dpu, Ynsynmd £ G
qnudh hwdwpwlund: B,(G) = max |@w) — ¢@)| phdp, npunbkn dwpuhunidp
Jtipgynid E punn gqpudbh pninp Ynntph, vwhdwiynd E npybu ¢ hudwpuljuidut
rupdpmipnil; G qpudh pupdpmipmniip uvwhdwiynmd £ npuybu B(G) = minB, (6),
nputn dhuhudnwdp JEpgynid E punn gpudbh poinp hwdwpwunudubph: buwnbpduy
qpudp vwhdwtymd t npytu pduyhtt wmnwugph ypw wnnpdws htnbkpduyutph hus-np
punwthph hwwnniwdubph qpud:

Usjuwnwupnid  pipynud £ hunbpdw) qpudubph  pwpdpnipniip  guunn
wnjhinthw) pupgnipyudp wignphpd: Ujgnphpdt nith 0(nA%log(A)) pupnnipnth,
npnbny np qpudh ququpibph pwbwli E, hull At ququpubph Ukswuqnyh
wuwnhfwp:

AJITOPUTM NOJUHOMHUAIBHOM CJIOKHOCTH ISl HAXO0KIEHHUSA BBICOTHI
rpagoB HHTEPBAJIOB

. Mypansu
AHHOTANUA

ITycts G=(X, U) — rpad co mHOxkectBoM BepmmH X u pedbep U. Kaxmoe B3ammHO-
OJTHO3HAYHOE OTOOpaxeHue ¢: X — {1, 2,...,|X |} Ha30BeM ero Hymepauuei. Ilpu stom uucno

lo(x) — ¢(y)| nHasosem mnmunoit pebpa (X,y), a uncna B, (G) = (mrglgulgo(x) — )| uB(G) =
Xy
m(gn B, (G), rae MunuMyM GepeTcs 1o BCEBO3MOKHBIM HyMmepaiusm rpada G, COOTBETCTBEHHO -

BbICOTON HyMmepamu ¢ u rpada G. ['pad mHTEepBanoB ompenensercs kak rpad mepecedeHuit
CEMEICTBA MHTEPBAJIOB JAHHBIX HA YHCIOBOU IIPSIMOH.

B macrtosimieit paboTe TPUBOAUTCS aJNTOPUTM  TMOJTHMHOMHAIBHOW  CIOKHOCTH ISt
HaXOXXJEHHUS BBICOTHI IPOU3BOJIBHOTO rIpada HMHTEPBAJIOB. AJTOPUTM HMMEET CJIOXKHOCTb
O(nAzlog(A)), I7ie N — KOJIMYECTBO BEPIIUH, a A — MaKCUMAalbHAasI CTENIEHb BEPIIUH rpada.
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