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Abstract

The Nearest Neighbor search algorithm considered in this paper is well
known (Elias algorithm). It uses error-correcting codes and constructs
appropriate hash-coding schemas. These schemas preprocess the data in the
form of lists. Each list is contained in some sphere, centered at a code-word.
The algorithm is considered for the cases of perfect codes, so the spheres and,
consequently, the lists do not intersect. As such codes exist for the limited set
of parameters, the algorithm is considered for some other generalizations of
perfect codes, and then the same data point may be contained in different lists.
A formula of time complexity of the algorithm is obtained for these cases,
using coset weight structures of the mentioned codes.

Keywords: NN search, Best match, Hash-coding schema, Perfect Codes,
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1. Introduction

Let E = {0,1}. Consider Cartesian degree E™, which is known as the set of vertexes of n-
dimensional unit cube. For any x,y € E™ denote by d(x,y) the Hamming distance between
vectors x and y. For an arbitrary x € E™ denote by S*(x) the sphere of radius r, centred at x, i.e.,
St(x) ={y/y € E™, d(x,y) < r} and by 0*(x) denote the shell of radius r, centred at x, i.e.,
Of(x) ={y/y € E"d(x,y) =r}. We will denote by car(x) the carrier of vector x =
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(%1, .., xp,) then car(x) = {i/x; = 1,i = 1, ...,n}. Denote by w(x) the weight of vector x, i.e.,
w(x) = X x;.

Let us have a subset F € E™ and a vector x € E™. Let us consider the problem of finding
the set of nearest neighbors of x from F. More precisely it is required to find the set F, =
{y € F/d(x,y) = d(x, F)}. Hash coding schemaes are considered [1,2] for preprocessing the
data. A brief description of such schemes is brought below.

Hash function is defined as a function h: E™ — V, where V = {v,, ..., vy} is a finite set of
N elements [1]. Cases are usually considered, when V = E*, k < n. The subset F is represented
as a union of N disjoint sets (lists). Denote by B; the set {x € E™/h(x) = v;}. The i-th list L;
stores those vectors belonging to F, which have the same hash value, ie., L; =
{xeF/h(x) =v;} or L =B;NF, i =1,...,N. Hash coding schemae is called balanced if
|B;| = 2"/N.

The Elias algorithm [2] considers blocks B; ordering them by their distances at vector x.
Mention that we must have an efficient method to find all blocks B;,, B;,, ..., B; ;, located at

distance j from x if such blocks exist. After the step of ordering, the algorithm examines the lists
Lj, Ly, e, Ly ;) ONE after another by increasing j,. Let the best match distance be denoted by §
(also the current value of the best match distance in the algorithm). Due to F # @ initialization of
& will happen in some step. Now, if the current values obey § < j algorithm stopes the work. All
blocks with higher distances than ¢ at x do not need to be examined. In the reminder case § > j,
examining the nonempty list L; the algorithm can change the best match distance &, also
refreshing the current best match set, or the § will remain unchanged and the current best match
set will be updated. The pseudocode of the algorithm is brought below:

Elias Algorithm // n is the word length, N is the number of blocks
inputx,F, IIF+@
integer § = oo, // the current best match distance
setS = @, // S-is the current set of vectors of F located at distance § from x
integer j = —1, // current distance of blocks under consideration from x
while(j < 8)
{ -
J++,
if(s(j) # 0) // s(j) is the number of blocks located at distance j from x
for(integer i=0, i<s(j), i++)
{
if(L;, # @) /I start examine the list L; , i-th list with j distanse block
if(6 < d(x,L;) //&is unchanged
S =5Su(0§(x)NL;) Il 0F(x) is the & neighborhood of x
else

{
§=0g5(x)NnLj, /l§ischanged

§=d(xL;,)
}
}
}

returnS, /IS = F, § =d(x,F)

Fig. 1: Pseudocode of Elias Algorithm.
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By the complexity of the algorithm we mean the average number of examined lists over all
files and queries, supposing that
a) each vector x € E™ equally likely can be requested.
b) each vector z € E™ independently appears in F with the same probability p. This gives
probabilistic distribution over the set of subsets of E™.

It is known [2, 3] that the algorithm is optimal, when the blocks are isoperimetric sets, a
particular case of which is a sphere.

2. Coset Weight Distribution of Uniformly Packed Codes

A nonempty subset C of E™ we call a code [4]. The code C will be called linear if C is a linear
subspase of E™. Denote by d. the minimum distance of code C i.e. d; = C"y'gcd(% c,). The
1,62
C1#Cy
packing radius [4] of C is called the following nonnegative integer: r. = [(d; — 1)/2]. Denote
by R, the covering radius of the code C, i.e., R, = max migl d(x,c). In the sequel, when it
XEE™ ce

doesn’t cause a confusion, we use notations d,r and R instead of d., . and R, respectively. We
say that we have a code C[n, k, d]R if the code C is linear, have dimension k, codes length n,
minimum distance d and covering radius R. When the code is nonlinear (or it is not known
whether the code is linear or not), we use the notation C(n, M, d)R instead, where M = |C|. We
also use this for linear codes as the second alternative notation. Recall that the code C is called
perfect [4], if r = R. It is known [4, 5] that in binary space nontrivial perfect codes can have
only the following two parameter sets:

(l) (zm -1, 22m—m—1' 3)1’

(1 [23,11,7]3.

Here (1) corresponds to the parameters of Hemming codes and (I1) refers to the case of Golay
code.

For x € E™ the coset of linear code C is called the set x + C ={x+c/c € C}. As it is
known [4], two different cosets do not intersect, and their union covers the space E™. We denote
by G the generator matrix of the linear code C|[n, k], which rows forming a basis of code C. Let
us denote by H, the parity check matrix of linear code C. Recall that H. is (n — k) X k matrix
and for H. holds the relation ¢ € C & H.cT = 0. Later, when it is clear which code we mean,
we will use notations H and G instead of H; and G, respectively. For x € E™ denote by A;(x)
the number of codewords of C located at distance i from x. The nonnegative integers
AS, A, ..., AS, where AY = |{c € C/w(c) = i}| are called weight spectra of code C. Let us
denote by W, (x,y) the weight enumerator of code C: W, (x,y) = X, A¢x™ iy, We can
consider weight enumerators depending only on one variable, i.e., W¢(x) = Y, AS x*. Denote
by K/ (i) the Kravchouk polynomial of degree j [4] i. e. K* (i) = X]_(—1)’ <7_ ;) (;)

A code C will be called quasi-perfect if R = r + 1 [4], [6]. Many families of quasi perfect
codes are known for the covering radius < 4 [6], [9-13] but the general problem of existence of
quasi-perfect codes by the given parameters isn’t completely solved yet [6]. A particular class of
quasi-perfect codes is the class of uniformly packed codes. A code C will be called uniformly

packed [8] if there are numbers ay, ..., ag(cy such that for x € E™ takes place Zfz(g) a;A;(x) = 1.

Theorem 1: Let C be a uniformly packed code with parameters aya4,...,agz. Then the
polynomial L.(x) = ¥R ,a;K]*(x) has R distinct integer roots between 0 and n.
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Let us denote those roots by &, ...,¢z. Mention that if C is a uniformly packed code
containing zero vector then there exists a uniformly packed code with the same parameters and
minimum weight 8, where 0 < 8 < R, which we will denote by Cj.

From Theorem 1 and its proof [8] follows:

Theorem 2: [8]. For the weight function of the uniformly packed code C; the following equality
takes place:

(1+x)"
L(0)

We, (1) =S50 + 58 BE(1+ 0" 6i(1 — x)fi. (1)
In (1) Bf[’;-s are coefficients of the representation of polynomial We, (x) in basis (1 + x)™ (1 —
x)t, i =0,...,n (recall that the set of polynomials of degree <n forms a linear space of
dimension n + 1). Bé-s can be calculated from (1) by equalizing the corresponding coefficients
in left and right sides and assuming that we know the first R coefficients of Wcﬁ(x). So, to find

the coefficients Bfi, we must solve the corresponding linear system of R equations with R

variables.
From Theorem 2 follows:

3. Hamming Code, Extended Hamming Code, Golay Code and Two Error-
Correcting Primitive BCH Codes

Denote by H;,, the Hamming code of length 2™ — 1. As we know [4], # is [2™ — 1,2™ —m —
1,3]1 perfect code. The parity check matrix of H is as follows:

00 - 1
10 - 1

i.e., columns of H, are all nonzero vectors of length m. As it is known [4], perfect codes have
R + 1 different types of coset, i.e., all cosets with the same minimum weight have the same
weight distribution.

Now let H,; be the binary Hadamard matrix of Paley type [4], i.e.,
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T

=

I
P OR RPRROOOROR
OR R ROOORORER
R PR OO0OOROR RO
R RO OO RO RRE O
_, OO OROR RORRE
S OO RO R RFRPRORRRE
CORORRORRRO
ORORRORRREROO
R OR R ORRROOO
ORRORRROOOR
_R RO R R ROOO RO

Let I;; be the identity matrix of size 11 x 11. The generator matrix of extended Golay code
[4] is as follows:

A 1T, L1 0T H11)
G — ( 11 11 )
(Q) 0 011 1 144

where by 0,, and 1,, are defined the vectors of length m consisting of all 0’s and 1’s,
respectively.

The Golay code G is obtained by deleting the last coordinate from every codeword of G. As
it is known, [4] G is a perfect three error correcting [23,12,7]3 code, therefore we can consider
it as a uniformly packed code with parameters a, = a; = a, = az = 1. Roots of L;(x) are §; =
8,¢&,=12and & = 16.

The extended Hamming code #,, is a [2™,2™ —m — 1,4]2 code [4], which is obtained
from Hamming code by adding the parity check bit, i.e., the parity check matrix of extended
Hamming code is as follows:

As it is known, the extended Hamming code is a uniformly packed code [6] and has four
types of coset weight distribution.

Let us denote a finite field of g elements (where g is a power of a prime number) by F,. We
will consider finite fields with characteristic 2. Denote by a the primitive element of the field
F,.Consider the set of formal polynomials F,[x] with coefficients from the field F,. As it is
known [4], the factor ring R[x] = F,;[x]/(x™ — 1) is a ring of principal ideals, i.e., each ideal in
R[x] is principal. An [n, k] code C will be called a cyclic code if C is linear, and if from ¢ =
(c1, €3, vy ) € C, it follows that (¢, ¢4, ..., ch_1) € C. We can correspond the polynomial ¢; +
cyx + -+ c,x™ 1 to each vector (cy, ¢y, ..., C,), SO We can consider a code as the subset of
R[x]. It is known [4], that each cyclic code is an ideal of R[x], i.e., there is a unique polynomial
g(x) suchthat Ve(x) € C 3f(x) c(x) = f(x)g(x), where multiplication is taken in R[x].

Two error correcting BCH codes (denoted by 3B,,) are defined as cyclic codes for lengths
n = 2™ — 1 [4,5] with a generator polynomial:

g(x) = LCM{My(x), M 43 ()},
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where by M ,i(x) is denoted the minimal polynomial of the element a’. These codes have the
dimension 2™ —2m — 1 and minimum distance equal to 5 [4]. It is known that two error
correcting BCH codes are quasi-perfect codes [4,13,14]. The weight distribution of BCH codes
was calculated in [4, 13,14]. For odd m two error correcting BCH codes are also uniformly
packed [8] with parameters a, = a; = 1, a, = as = %. Roots of Lg(x) are & = nTH — nTH
& = "TH and &3 = nTH + /"TH It is known, that there are four distinct coset weight
distributions.

For even m two error correcting BCH codes are not uniformly packed. It is proved that there
are eight distinct coset weight distributions in this case, which are brought in [14].

4. Complexity of the Algorithm

Suppose we have an [n, k] code C with covering radius R and C = {cl,cz, ...,Czk}. We define a
hash function h: E™ — C, associated to the code C in the following way:

he() = {ci/d(x,¢)) = min{d(x, ©)}}. 3

As it follows from (3), h-(x) could be a multivalued function because the blocks B; are spheres
of radius R, and they can intersect (recall that B; = {x € E"/h-(x) = ¢;}, i € {1, ..., 2¥}). When
the code C is perfect, the mentioned blocks do not intersect, and their union covers the unit cube.
The formula below for complexity of algorithm is brought for the case corresponding to
Hamming code. We also consider hash functions associated to codes in some sense “near” the
perfect codes. Such property also has the so called quasi-perfect codes. Indeed, the algorithm is
proposed for balanced hash coding schemas where different blocks B; do not intersect; we also
consider the algorithm for the case of intersecting blocks. In this case, when blocks intersect, we
create the list in a similar way. Repeated elements bring some redundancy (in terms of memory).

To obtain a formula of complexity of the algorithm, for x € E™ let us consider Fig. 2. In
Fig. 2 Fy, Fy, ..., Fon are all subsets of vertexes of unit cube and each F; could be generated with

the corresponding probabilityp;.

< P1 P2 p,.n probability
Fy | F, | = | Fn |subset
B, | a¥; | af, | -~ a’l‘zzn
blocks B, |a}y | af, | | @ m
B,k a’z‘kl a)z(kz a)z(kzzn
Fig. 2.

We will use the values af; putting them in the cells corresponding to block B; and subset F;,

where
x _ {1, if B;is considered in case of set F; and vertex x,

Y 0 otherwise.
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As we mentioned, the complexity of the algorithm will be represented as

XEE™ 1<i<2k 1<j<22"

Let us denote @ (B;) = X, _c,2n Pjaij- As We can see, @ (B;) is the probability that the
block B; will be considered by the algorithm when the vector x is requested. Then

ahe) = D Y BB,

It is easy to understand that for a fixed query x the block B; will be examined if the sphere
Sax,p)-1 does not contain any vector belonging to F. In that case, all blocks By such that
d(x,B;) < d(x,B;) — 1, will be examined. Let j vary over all possible distances between vector
x and blocks B;. Denote by T, (j) the number of blocks located at distance < j from vector x,

then
1
alh) =5 D Y TGVG), “

XEEM™ 0<j<n

where V(j) denotes the probability that the nearest vector in F is located at distance j from x.
Recall that [2]

T} j n

j 1

v) = (1-a-pb))a-pm=l)

As d(x,C;) = w(x + c;), then the number of vectors located at distance i is equal to A¥*¢. The
sphere with centre c; and radius R will be located at a distance < j from vector x if and only if
d(x,c;) < j+ R. Therefore

J+R

T, (j) = Z AF¥C, (5)

We consider that A¥*¢ = 0 when i > n.
Taking into account formulas (4) and (5) and the coset weight structures for considered codes,
we may formulate the following:

Proposition 1: The complexity of the algorithm for the hash function defined by [2™ — 1,2™ —
m — 1,3]1 Hamming code ,, is:

j+1
1 .
a(hy,) = Z V() Z(Affm + (2™ — DAY |, (6)
0<j<2m—1 i=0

where by e; is denoted any fixed vector of weight i.

Proposition 2: For the Golay code G the complexity of the algorithm is:

1 23 253 5819
_ 2 . E g e +g e+G e3+G
(l(hg) = V(]) <ﬁAl +ﬁAi1 +WA1-2 +TAL-3 ) (7)

0<j<23 i=0
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Proposition 3: For the code #,,, the complexity of the algorithm is:

j+2

b )= . 1 AFm 1 e+ 7m 2m—1 A4+ ®8)
a( ﬁm)_ V(]) om+1 7 +§ i + om+1 i ’

0<j<2m i=0

where by u; is denoted any fixed vector of weight 2, the first coordinate of which is equal to 1.

Proposition 4: For two error correcting BCH code 8B, of length 2™ — 1 for odd m the
complexity of the algorithm is:

j+3

. 1 B 2m—1 e1+38
a(h%m) = Z V(]) Z (22m Ai "t 22m Ail "+
0<j<2m-1 i=0 (9)
-1 2m—1 -1
N m-1DER™t-1) 4o Bm 22m=1 4 pm=1 _ 1A?3+%m>.
22m 14 zzm L

5. Numeric Results

Even having formulas, it is hard to imagine the practical complexities of things. To compare the
results with those in [2], we provide numeric results for propositions 1 to 4 to demonstrate the
complexity of the algorithm for each case of hash-coding schema. Table 1 demonstrates the
formula (6) in cases of Hamming code of length 2™ — 1 for m = 4. Table 2 demonstrates the
formula (7) in case of Golay code. Tables 3 and 4 demonstrate the formula (8) in cases of
extended Hamming code of length 2™ — 1 for m = 4 and m = 5. Table 5 demonstrates the
formula (9) in case of BCH codes of length 2™ — 1 for m = 5.

Table 1: Complexity of the algorithm in case of Hamming code of length 15.

Subset generation Average number of The percentage relation of
probability p considered blocks considered elements and
cardinality of subset

1 1 0.05

2t 4.28 0.21

2 6.2 0.3

2 10.1 0.49

2 17.31 0.85

2° 26.3 1.28

2° 42.27 2.06

27 67.67 3.3

28 107.23 5.24

2° 170.38 8.32

21 268.45 13.11

2t 418.26 20.42

2% 638.09 31.16

23 901.17 44.0

21 1001.82 48.92

2 823.24 40.2
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Table 2: Complexity of the algorithm in case of Golay code of length 23

Subset generation

Average number of

The percentage relation of

probability p considered blocks considered elements and
cardinality of subset
1 1 0.02
2 3.16 0.08
2 4.26 0.10
23 5.45 0.13
24 8.54 0.21
2° 12.86 0.31
2° 17.14 0.42
27 24.51 0.6
28 36.97 0.90
29 51.85 1.27
210 75.16 1.83
21 109.80 2.68
21 157.04 3.83
21 227.57 5.55
21 325.28 7.94
21 463.76 11.32
2716 654.12 15.97
2 911.53 22.25
218 1249.29 30.50
21 1674.63 40.88
2% 2176.78 53.14

Table 3: The case of extended Hamming code of length n = 16.

Subset generation

Average number of

The percentage relation of

probability p considered blocks considered elements and
cardinality of subset

1 4.28 0.89

21 13.03 2.72

22 17.83 3.72

23 25.47 5.32

24 39.69 8.29
2° 56.14 11.73
2° 80.80 16.89
2’ 119.08 24.89
28 171.14 35.77
29 247.85 51.81

210 354.80 74.17

21 502.63 105.07

15
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2% 699.58 146.24
21 947.74 198.12
2 1196.9 250.20
2" 1235.31 258.23
2% 977.51 204.34

Table 4: The case of extended Hamming code of length n=32.

Subset generation

Average number of

The percentage relation of

probability p considered blocks considered elements and
cardinality of subset
1 8.26 0.0001
21 47.01 0.0005
272 66.43 0.0008
278 82.93 0.001
2 147.70 0.001
2° 280.41 0.003
26 419.46 0.005
27 568.55 0.007
28 976.12 0.012
27 1731.29 0.02
210 2572.65 0.03
21 4038.7 0.04
212 7117.07 0.08
21 11173.6 0.13
21 18011.1 0.22
2 30662.2 0.37
216 48773 0.6
21 81535.8 1.00
218 133110 1.63
21 218976 2.69
2% 358907 4.42
22t 587880 7.24
22 957978 11.79
25 1.55722-10° 19.17
2% 2.511422-10° 30.16
25 4.0295-10° 49.63
-26
2 6.3936-10° 78.74
-27
2 1.0009-107 123.27
2% 1.53811-10’ 189.44
2 2 20847-107 283.09
27 3.16976-10" 39041
2" 3.4639-107 462.64
2% 347.46

2.82105-10’
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Table 5: The case of two error correcting BCH code of length n=31.

Subset generation Average number of The percentage relation of
probability p considered blocks considered elements and
cardinality of subset
1 4.87 0.001
2t 20.23 0.004
22 27.93 0.006
23 34.07 0.007
24 54.72 0.01
2° 94.71 0.02
2° 135.65 0.03
27 179.04 0.04
28 284.66 0.06
29 463.67 0.10
210 658.39 0.15
Vi 987.25 0.22
212 1597.11 0.37
2B 2363.61 0.54
21 3624.62 0.84
2 5683.15 1.32
21 8556.05 1.98
vl 13333.3 3.09
218 20290.5 4.71
2B 31196.3 7.25
2% 47458 11.03
24 72165.5 16.77
22 108815 25.29
23 162915 37.87
2% 241404 56.11
2% 353024 82.06
2% 507518 117.977
2% 713305 165.813

17
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228 971293 225.785
2% 1.22855-10° 285.587
2% 1.26797-10° 294.749
2% 1.00312-10° 233.184

6. Conclusion

The Nearest Neighbor search algorithm considered in this paper is well known (Elias algorithm).
It uses hash-coding schemas for data preprocessing. These schemas partition the space into non-
intersecting blocks of the same cardinality. It is known that the algorithm is optimal when these
blocks are spheres. Such partitions may be obtained by error-correcting codes. The algorithm is
considered for the cases of perfect codes, so the spheres and, consequently, the lists do not
intersect. As such codes exist for a limited set of parameters, the algorithm is considered for
some other generalizations of perfect codes, and then the same data point may be contained in
different lists. A formula of time complexity of the algorithm is obtained for these cases. These
formulas show the area of practical use of the algorithm: the algorithm encounters “the course of
dimensionality”, i.e., as the word length grows, the algorithm turns into an exhaustive search in a
file.

References

[1] D. E. Knuth, The Art of Computer Programming, vol. 3, Sorting and Searching,
second edition, Eddison-Wesley, 1998.

[2] R. Rivest, “On the optimality of Elias’s algorithm for performing best-match
searches”, Information Processing, pp. 678-681, 1974.

[3] L.H.Aslanyan and H. E. Danoyan, “On the optimality of the hash-coding type nearest
neighbour search algorithm”, Selected works of 9th CSIT conference, pp. 1-6, 2013.

[4] F. J. Mac-Williams and N. J. A. Sloane, The Theory of Error-Correcting Codes,
Amsterdam, The Netherlands: North-Holland, 1986.

[5] V. A. Zinoviev and V. K. Leont’ev, “The nonexistence of perfect codes over Galois
fields”, Problems of Control and Information Theory, vol. 2, no. 2, pp. 123-132, 1973.

[6] L. A.Bassalygo, G. V. Zaitsevand V. A. Zinoviev, “Uniformly packed codes”,
Problemy Peredachi Informatsii, vol. 10, no. 1, pp. 9-14, 1974.

[7] T. Baicheva, I. Bouyukliev and S. Dodunekov, “Binary and ternary linear quasi-
perfect codes with small dimensions”, IEEE Transactions of Information Theory, vol.
54, no. 9, pp. 4335-4339, 2008.

[8] E. M. Gabidulin, A. A. Davydov and L. M. Tombak, “Linear codes with covering
radius 2 and other new covering codes,” IEEE Transactionsof Information Theory,
vol. 37, no. 1, pp. 219-224, 1991.



L. Aslanyan and H. Danoyan 19

[9] A. A. Davydov and A. Yu. Drozhzhina-Labinskaya, “Constructions, families, and
tables of binary linear covering codes,” IEEE Transactions of Information Theory, vol.
40, no. 4, pp. 1270-1279, Jul. 1994.

[10] T. Etzion and B. Mounits, “Quasi-perfect codes with small distance”, IEEE Trans.
Inform. Theory, vol. 51, no. 11, pp. 3938-3946, 2005.

[11] T. Etzion and G. Greenberg, “Constructions for perfect mixed codes and other
covering codes,” IEEE Transactions of Information.Theory, vol. 39, no. 1, pp. 209-
214, 1993.

[12] D. Gorenstein, W. Peterson and N. Zierler, “Two error-correcting bose-chaudhuri
codes are quasi perfect”, Information and Control, no. 3, pp. 291-294, 1960.

[13] T. Kasami, S. Lin and W. Peterson, “Some results on the weight distributions of BCH
codes”, IEEE Trans. Information Theory, vol. 12, no. 2, pp. 274-277, 1966.

[14] P. Charpin “Weight distributions of cosets of two-error-correcting BCH codes,
extended or not”, IEEE Transactions of Information.Theory, vol. 40, no. 5, pp. 1425-
1442, 1991.

Submitted 18.02.2019, accepted 15.04.2019.

Uhuuy ninnnn Ynnbkph dpu hhpdtdusd dnnwljuw hwpbwuubph
thunpuwt wignphpuh pupgnipjniup
Lunt Z. Unjuiywi b Zuyy E. Fwbnjub

22 QUU Pudnpdunhljuyh b wjundwwnwugdwt wpnp kdbutph hptunhnnun
e-mail: lasl@sci.am, hed@ipia.sci.am

Udthnthnid

Zujnuh E dnnuju hwplbwtbubph thunpdwt hwy-Ynpudnpdwutt nhyh Ejhwuh
wignpppup:  Uignphpunid jupnn &b hpundb] upew) ngnnn - Yonkpp hwp-
nnuynpdwt uppbdw junpnmigbint hwdwp: Uy ujpbkdwibpp ndyuibpp ubpuyugind
Et gniguljuiph wnbkupny: Ywdwyulwbu gnigul] hpkuhg ukpjuyjugunmd £ nplk qunh
tupwpwuqunipinit (ZEdhigh nupwénipniunid), nph JEuwnpnup todws ujpwy ninnnn
Unnh Ynpughtt pue ko Upgnphpdp ghunwplynud £ junwpyuy agtph - hadwp,
htwnbwpwp Ynnujhtt puntph onipe hwdwwwunwupwt swnwynny qupbpp sku
hwwnynid, htnbwpwp tyywsd gniguljutpp unyuybu skt hwngh: Lwtth np juwnwupuyg
Unpbp gnynipjnit niubkt wquwpwdbnpbph uybghdhl wpdtputph hwdwp, wgnphpup
nhunwpldl; £ juunwpuw; Ynpbkph wyp pugphwbpwgnidubpnyg  unwgynn  hwp-
ynpuynpdwtt vpubdwubph hwdwp, npunbn, vwuyl, dhltiunyt fbdbunp jupnn k
wuwwnlwuk) dp puh gniguljutiph: Lyyws nhypbph hwdwp vnwgyl] Eu wgnphpdh



20 Complexity of Error-Correcting Code Based on Nearest Neighbor Search Algorithm

puppmuipjut - pubwdbtpp jwpjws  Ynnh hwpuwyhg gwubph - Yopught
Junnigyuspubtphg:

Pwmuwh  punkp’ Unnnwulju  hwpbwbubkph  thbunpnd,  judugnyt
hwdpuljundubph  thtnpnud, hwo-Ynpudnpdwt ujubdw, YJwuwpu Ynghp,
hujuwuwpusw hwptpudnpjws §ngkp, plughunwupyu jnnkp

CJ105KHOCTDH AJITOPUTMA MOUCKA OJIMKANIINX coceleil ¢ KogaMu
HCIPABJSIONIMMH OIINOKH

Jleron A. Acnansia u Alik DO. JlaHosiH

Wueruryt npobnem nndopmaruku n apromaruzanun HAH PA
e-mail: lasl@sci.am, hed@ipia.sci.am

AHHOTANUA

W3BecTeH anropuTM TIOMCKAa OMKaWIUX cocefedl (anroputM Onmaca). AJTOPUTM
I/ICHOJ'IB?)yeT KOJBI, chpaBnmomHe OI_HI/I6KI/I JUTIA HOCTpOGHI/ISI CXEM XGH_I-KOI[I/IpOBaHI/ISI. 3TI/I
CXEMBI TIPEJICTABIISIIOT JaHHBIC B (popMe CIUCKOB. KaKIbIil CIMCOK COACPKUTCS B HEKOTOPOU
cdepe, IEHTPOM KOTOPOTO SIBISIETCS HEKOTOPOE KOJIOBOE CIOBO. AJTOPUTM paccMaTpUBaeTCs
JUISL CITy4aeB COBEPIICHHBIX KOJIOB, MMOATOMY YKa3aHHbIE c(ephl U, CIeA0BaTEeIIbHO, CIIHMCKUA HE
nepecekaroTcs. [10CKOIbKY COBepIIeHHBIE KOABI CYIIECTBYIOT JUIsl OYE€Hb CIEIUpHIHOro Habopa
napamMeTpoB, AJITOPUTM PACCMATPUBACTCS I HEKOTOPHIX OOOOIIEHUN COBEPIICHHBIX KOOB,
Korga ogHa U Ta € TOUKA AJAHHBIX MOXKCT COI[ep)KaTI:CH B paSHBIX CIIUCKax. I[J'ISI yKa?)aHHBIX
CiIy4aeB MOJIy4eHBI (hOPMYJIbI BPEMEHHOU CIIOKHOCTH aJITOPUTMA C HUCIIOJIB30BAHHEM BECOBOM
CTPYKTYPBI CMEKHBIX KJIACCOB KOJIOB.

KiroueBble ciioBa: TOUCK OMMKaHIIMX COCEACH, MOUCK HAWIYUYIINX COBIAICHHUM, CXEMBI
XCH_I-KOI[I/IpOBaHI/IH, COBepH_IeHHBIC KOJBbI, paBHOMepHO yHaKOBaHHBIG KOJBI, KBaSI/ICOBepLHCHHBIe
KOJIBI



