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Abstract

Y. Manoussakis (J. Graph Theory 16, 1992, 51-59) proposed the following conjec-
ture.

Conjecture. Let D be a 2-strongly connected digraph of order n such that for all
distinct pairs of non-adjacent vertices x, y and w, z, we have d(x)+d(y)+d(w)+d(z) >
4dn — 3. Then D is Hamiltonian.

In this note, we prove that if D satisfies the conditions of this conjecture, then
(i) D has a cycle factor; (i) If {x,y} is a pair of non-adjacent vertices of D such
that d(z) + d(y) < 2n — 2, then D is Hamiltonian if and only if D contains a cycle
passing through x and y; (iii) If {z,y} a pair of non-adjacent vertices of D such that
d(x)+d(y) < 2n—4, then D contains cycles of all lengths 3,4, ...,n—1; (iv) D contains
a cycle of length at least n — 1.
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1. Introduction

In this paper, we consider finite digraphs (directed graphs) without loops and multiple arcs.
Every cycle and path are assumed simple and directed. A digraph D is Hamiltonian if it
contains a cycle passing through all the vertices of D. There are many conditions that guar-
antee that a digraph is Hamiltonian (see, e. g., [1]-[5]). In [5], the following theorem was
proved.

Theorem 1.1: (Manoussakis [5]). Let D be a strongly connected digraph of order n. Suppose
that D satisfies the following condition for every triple x,y,z € V(D) such that x and y are
non-adjacent: If there is no arc from x to z, then d(z) + d(y) + d*(z) +d~(2) > 3n — 2. If
there is no arc from z to x, then d(z)+d(y)+d~ (x)+d*(z) > 3n—2. Then D is Hamiltonian.

Definition 1.2: Let D be a digraph of order n. We say that D satisfies condition (M) when
d(z)+d(y)+d(w)+d(z) > 4n—3 for all distinct pairs of non-adjacent vertices x,y and w, z.
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22 On the Manoussakis Conjecture for a Digraph to be Hamiltonian

Manoussakis [5] proposed the following conjecture. This conjecture is an extension of
Theorem 1.1

Conjecture 1.3: (Manoussakis [5]). Let G be a 2-strongly connected digraph of or-
der n such that for all distinct pairs of non-adjacent vertices x, y and w, z we have
d(z) +d(y) + d(w) + d(z) > 4n — 3. Then D is Hamiltonian.

This conjecture seems quite difficult to prove. Manoussakis [5] gave an example, which
showed that if the conjecture is true, then the minimum degree condition is sharp. Notice
that another examples can be found in [6], where for any two integers k > 2 and m > 1,
the author constructed a family of k-strongly connected digraphs of order 4k + m with
minimum degree 4k +m — 1, which are not Hamiltonian. This result improves a conjecture
of Thomassen [2] (Conjecture 1.4.1). Moreover, when m = 1, then from these digraphs
we can obtain k-strongly connected non-Hamiltonian digraphs of order n = 4k 4+ 1 with
minimum degree equal to n — 1 and the minimal semi-degrees equal to (n — 3)/2. Thus, if in
Conjecture 1.3 we replace 4n — 4 instead of 4n — 3, then for every n there are many digraphs
of order n with high connection and high semi-degrees, for which Conjecture 1.3 is not true.

The author [7] proved the following theorem.

Theorem 1.4: (Darbinyan [7]). Let D be a strongly connected digraph of order n > 3.
Suppose that d(x) 4+ d(y) > 2n— 1 for every pair of non-adjacent vertices x,y € V(D) \ {z},
where z is some vertex of V(D). Then either D is Hamiltonian or contains a cycle of length
n—1.

It is easy to see that if a digraph D satisfies the condition (M), then it contains at most
one pair of non-adjacent vertices z,y such that d(z)+d(y) < 2n—2. From this and Theorem
1.4 immediately follows the following corollary.

Corollary 1.5: Let G be a strongly connected digraph of order n satisfying condition (M).
Then D contains a cycle of length at least n — 1 (in particular, D contains a Hamiltonian
path).

Corollary 1.5 was also later proved by Ning [8].

In this paper we investigate the properties those digraphs, which satisfy the condition of
Conjecture 1.3. Let D be a 2-strongly connected digraph of order n satisfying the condition
(M) and let {z,y} be a pair of non-adjacent vertices of D. In Section 4 we prove:

(i) D has a cycle factor;

(ii) If d(z) + d(y) < 2n — 2, then D is Hamiltonian if and only if D contains a cycle
passing through z and y;

(iii) If d(x) + d(y) < 2n — 4, then D contains cycles of all lengths 3,4,...,n — 1;

(iv) Suppose that xixs . . . x,_syx; is a cycle of length n—1 passing through y and avoiding
z. If d(z) +d(y) < 2n —2 and z,_o — & — z1, then D is Hamiltonian.
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2. Terminology and Notation

In this paper we consider finite digraphs without loops and multiple arcs. We shall assume
that the reader is familiar with the standard terminology on digraphs and refer to [1] for
terminology and notations not discussed here. The vertex set and the arc set of a digraph D
are denoted by V(D) and A(D), respectively. The order of D is the number of its vertices.
For any z,y € V (D), we also write z — y if zy € A(D). If xy € A(D), y is an out-neighbour
of x and z is an in-neighbour of y. If x — y and y — z, we write x — y — z. Two distinct
vertices = and y are adjacent if zy € A(D) or yx € A(D) (or both). If there is no arc from
x to y, we shall use the notation xy ¢ A(D).

We let N*(z), N~ (z) denote the set of out-neighbours, respectively the set of in-
neighbours of a vertex x in a digraph D. If A C V(D), then N*(z,A) = AN N*(z) and
N~ (x,A) = AN N~ (x). The out-degree of x is d™(x) = |[NT(z)| and d~(x) = [N~ (x)]| is the
in-degree of x. Similarly, d*(z, A) = |[N*(z, A)| and d”(x, A) = [N~ (x, A)|. The degree of
the vertex x in D is defined as d(z) = d* (z)+d ™ (x) (similarly, d(z, A) = d*(z, A)+d ™~ (z, A)).
The subdigraph of D induced by a subset A of V(D) is denoted by D(A). If z is a vertex of
a digraph D, then the subdigraph D(V (D) \ {z}) is denoted by D — z.

For integers a and b, a < b, let [a, b] denote the set of all integers, which are not less than
a and are not greater than b.

The path (respectively, the cycle) consisting of the distinct vertices 1, xg, ..., 2, ( m >
2) and the arcs x;x;11, ¢ € [1,m — 1] (respectively, z;x;11, i € [1,m — 1], and z,,x1), is
denoted by xixs-- -z, (respectively, xixs---x,x1). The length of a cycle or path is the
number of its arcs. We say that zyz5 - - - x,, is a path from z; to x,, or is an (z1, T, )-path.
Let  and y be two distinct vertices of a digraph D. Cycle that passing through x and y in
D, we denote by C(z,y).

A cycle (respectively, a path) that contains all the vertices of D, is a Hamiltonian cycle
(respectively, is a Hamiltonian path). A digraph is Hamiltonian if it contains a Hamiltonian
cycle. A digraph D of order n > 3 is pancyclic if it contains cycles of all lengths m,
3 <m <n. For a cycle C' = xyx5--- 2,21 of length k, the subscripts considered modulo £,
i.e., z; = xs for every s and ¢ such that i = s(mod k). If P is a path containing a subpath
from x to y, we let P[x,y] denote that subpath. Similarly, if C' is a cycle containing vertices
x and y, C[x,y] denotes the subpath of C' from z to y.

A digraph D is strongly connected, if there exists a path from z to y and a path from y
to x for every pair of distinct vertices z,y. A digraph D is k-strongly (k > 1) connected if
|[V(D)| > k+1and D(V (D) \ A) is strongly connected for any subset A C V(D) of at most
k — 1 vertices.

Let H be a non-trivial proper subdigraph of a digraph D. For the subdigraph H, a H-
bypass is a path of length at least two with both end-vertices in H and no other vertices in H.
If C'is a non-Hamiltonian cycle in D and (z,y)-path P is a C-bypass with V(P) NV (C) =
{z,y}, then we call the length of the path C|x,y] the gap of P with respect to C.

A cycle factor in D is a collection of vertex disjoint cycles Ci, ..., C; such that V(C;) U
LLUV(C) =V(D).

For a pair of disjoint subsets A and B of V(D), we define A(A — B) = {zy € A(D)|z €
A,y € B} and A(A,B) = A(A— B)UA(B — A).
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3. Preliminaries

Lemma 3.1: (Haggkvist, Thomassen [9]). Let D be a digraph of ordere n > 3 containing
a cycle C' of length m, m € [2,n — 1]. Let x be a vertex not contained in this cycle. If
d(z,V(C)) > m+1, then D contains a cycle of length k for all k € [2,m + 1].

The following lemma is a modification of a lemma by Bondy and Thomassen [10], its
proof is almost the same.

Lemma 3.2: Let D be a digraph of order n > 3 containing a path P := z129...2,,,
m € [2,n—1]. Let x be a vertex not contained in this path. If one of the following statements
holds:

() d(z, V(P)) = m +2

(ii) d(z,V(P)) > m+1 and xxy ¢ A(D) or xpmx ¢ A(D);

(iii) d(x,V(P)) > m, xzx; ¢ A(D) and z,,x ¢ A(D);
then there is an i € [1,m — 1] such that z;x,zx;1 € A(D), i.e., D contains a path
T1To ... TiTTiyy - .. Ty Of length m (we say that x can be inserted into P or the path
T1To ... TiTTiyq - - . Ty 1S an extended path obtained from P with x).

It is not difficult to prove the following lemma.

Lemma 3.3: Let D be a digraph of order n. Assume that xy ¢ A(D) and the vertices x, y
in D satisfy the degree condition d*(x)+d (y) > n—2+k, where k > 1. Then D contains
at least k internally disjoint (x,y)-paths of length two.

Lemma 3.4: (Bypass Lemma, Bondy [11]). Let D be a strongly connected non-separable
(i.e., UG(D) is 2-connected) digraph and let H be a non-trivial proper subdigraph of D.
Then D contains a H-bypass.

Theorem 3.4: (Yeo [12]). Let D be a digraph. Then D has a cycle factor if and only if V(D)
cannot be partitioned into subsets Y, Z, Ry, Ry such that A(Y — Ry) = A(Ry — RUY) =0,
Y| > |Z| and Y is an independent set.

Theorem 3.5: (Meyniel [4]). Let D be a strongly connected digraph of order n > 2. If
d(x) +d(y) > 2n — 1 for all pairs of non-adjacent vertices in D, then D is Hamiltonian.

Before stating the main result of [14], we need to define a family of digraphs.

Definition 3.6: For any integers n and m, (n +1)/2 < m < n — 1, let " denote the
set of digraphs D, which satisfy the following conditions: (i) V(D) = {x1,za,...,x,}; (i)
TpTp_1 ... ToT1Ty 08 a Hamiltonian cycle in D; (iii) for each k, 1 < k < n —m+ 1, the
vertices Ty, and Tyim—1 are not adjacent; (iv) x;z; ¢ A(D) whenever 2 <i+1<j <n and
(v) the sum of degrees for any two distinct non-adjacent vertices at least 2n — 1.

Theorem 3.7: (Darbinyan [13], [14]). Let D be a strongly connected digraph of order n > 3.
Suppose that d(x) + d(y) > 2n — 1 for all pairs of distinct non-adjacent vertices x, y in D.
Then either (a) D is pancyclic or (b) n is even and D is isomorphic to one of Ky, .
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K3 900 \ {e}, where e is an arbitrary arc of Ky, /5, or (¢) D € @3 (in this case D does
not contain a cycle of length m).

Later on, Theorem 3.7 was also proved by Benhocine [15].

4. Proofs of the Results

From the definition of condition (M) the following lemma follows.

Lemma 4.1: Let D be a digraph of order n satisfying condition (M). Then D contains at
most one pair of non-adjacent vertices x, y such that d(x) + d(y) < 2n — 2.

Theorem 4.2: Let D be a 2-strongly connected digraph of order n > 3 satisfying condition
(M). Suppose that {x,y} is a pair of non-adjacent vertices of D such that d(x) + d(y) <
2n—2. Then D is Hamiltonian if and only if D contains a cycle passing through the vertices
x and y.

Proof. If D is Hamiltonian, then obviously it contain a cycle passing through z and y.
Suppose that D contains a cycle passing through the vertices x and y but D is not Hamil-
tonian. Let C be a longest cycle, say of length m, passing through x and y. Since D
is not Hamiltonian, we have that m < n — 1. From 2-connectednees of D and Bypass-
Lemma it follows that there is a C-bypass, say P = uy,ys . ..yxv, where u,v € V(C) and
Y1, Y2, -, yp € V(D) \ V(C). Without loss of generality, assume that the gap |Clu,v]| — 1
of P is the minimum among the gaps of all C-bypasses. Then

AWV (Clu, v)) \ {u, v}, V(Plyr, yi])) = 0. (1)

Put f := |V (Clu,v]) \ {u,v}|. Since C is a longest cycle passing through x and y, it follows
that f > 1. Now we extend the path Cfv, u] with the vertices of V(Clu,v]) \ {u,v} as mach
as possible. We obtain a (v, u)-path, say R. Then, since C'is a longest cycle passing through
x and y, R does not contain some vertices uy, ug, . .., uq of V/(C[u,v])\ {u,v}. Using (1) and
Lemma 3.2(i), for all y; and u; we obtain

d(y;, V(C)) <m—f+1 and d(u;,V(C))=d(u;, V(R))+d(uw,{u,...,us}) <m+d—1.

By the minimality of the gap f + 1 we also have that D contains no path of the form y;zu;
and wu;2y;, where z € B := V(D) \ (V(C)U{y1,...,yx}). Therefore,

d(ui, B) +d(y;, B) < 2|B|.
Now by a simple calculation we obtain
d(u;)+d(y;) = d(ui, V(C))+d(y;, V(C))+d(ui, B)+d(y;, B)+d(ui, Plyr, yi])+d(y;, Plys, ye])

<m+d—-14+m—f+1+2|B|+2k—2<2n-2,

a contradiction with Lemma 4.1 since w; and y; are not adjacent and {u;,y;} # {z,y}.
Theorem 4.2 is proved.



26 On the Manoussakis Conjecture for a Digraph to be Hamiltonian

Clearly, the existence of a cycle factor is a necessary condition for a digraph to be Hamil-
tonian.

Theorem 4.3: Let D be a 2-strongly connected digraph of order n satisfying condition (M).
Then D has a cycle factor.

Proof. Suppose, on the contrary, that D has no cycle factor. By the Yeo theorem, V(D)
can be partitioned into subsets Y, Z, Ry, Ry such that A(Y — Ry) = A(Ry — R UY) = 0,
Y| > |Z] and Y is an independent set. Using these and 2-connectedness of D, we obtain
that it follows that |Z] > 2 and hence, |Y| > 3. Let z,y, 2z be three distinct vertices of
Y. Since Y is an independent set, we have that {z,y} and {x,z} are two distinct pairs of
non-adjacent vertices of V(D). Now using condition (M), we obtain

An—3 < 2d(x)+d(y) +d(2) < 8 Z|+4|Ry| +4|Ro| +4]Y | —4]Y] = dn—4(|Y |~ |Z|) < 4n—4,

a contradiction. Theorem 4.3 is proved.

Using Yeo’s theorem, it is not difficult to show that in Theorem 4.3 the minimum degree
condition is sharp.

Theorem 4.4: Let D be a 2-strongly connected digraph of order n > 3. Suppose that D
contains at most one pair of non-adjacent vertices. Then D is Hamiltonian.

Proof. Suppose, on the contrary, that D is not Hamiltonian. Therefore, D is not semicom-
plete and contains exactly one pair, say {z,y}, of non-adjacent vertices. Then d(z) > n —2,
dly) >n—2and d(z) >n—1for all z€ V(D) —{z,y}. Since D is 2-strongly connected, it
follows that both subdigraphs D — x and D — y both are strongly connected semicomplete
digraphs. Therefore, D — x and D — y both are Hamiltonian. Let C,_1 := x5 ... T, 2y
be a Hamiltonian cycle in D — z. Since D is not Hamiltonian, from d(z) > n — 2 and the
fact that x is adjacent to every vertex of V(D) — {y} it follows that there exists an integer
[ € [2,n — 3] such that

(T, Tga, - Taa} — @ — {21, 79, .., 10} (2)

Similarly, for some k € [2,n — 3] we have

{Trp1s Thpo, - tn2} =y — {21, 22, k) (3)

Observe that for every pair of integers 7,7, 1 <i < j < n — 2, in D there is no path of the
types ; — y — x; and x; — 2z — x;. By symmetry between x and y, we may assume that
k > 1. Then by (2), (3) and our observation we have

A({z,y} = {Zer1, Thr2, - Tn2}) =0 and  {zpr, Thyo, -, 00} — {7y} (4)

From (4) and 2-connectedness of D it follows that there exist ¢ € [1,k—1] and j € [k+1,n—2]
such that x; — z; (for otherwise, A({z1,22,...,25—1,2,y} — {Ths1, Thi2, - Tna}) = 0,
which means that D — xj is not strongly connected). Note that y — z;1;. We choose
J maximal with these properties. Using (2) and (3), it is easy to see that if z;_; — =,
then x1... 2% ... Tp_2yYTip1 ... xj_1xx1 is a Hamiltonian cycle, which contradicts our sup-
position. We may therefore assume that z;_jz ¢ A(D). Then from k& > [, (4) and
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the maximality of j it follows that j = k + 1 and zyz ¢ A(D). Hence, | = k
and A({x1,%9, ..., Tp_1} — {Thios This,---,Tn o)) = 0. This together with (4) and 2-
connectedness of D implies that there is an integer s € [k + 2,n — 2| such that z;, — ;.
Therefore, 1 ... 2041 .. - Ts1TT441 ... TpTs . .. Tp_oyxy is a Hamiltonian cycle, a contradic-
tion. Theorem 4.4 is proved.

Remark: There is a strongly connected non-Hamiltonian digraph of order n > 5, which is
not 2-strongly connected and has exactly one pair of non-adjacent vertices.

To see this, consider the following digraph D defined as follows:
V(D) = {x1,22,...,Tn2,Y, 2}, T1Z2,...Ty_2yx is a cycle of length n — 1 in D,

N~ (y) = N~ (2) = {xp, Ths1,- -, Tno} and NT(y)= NT(2)={z1,20,..., 21},

where k € [2,n — 3], D also contains all the arcs z;x; whenever 1 < i < j <n —2 and it
contain no other arcs.
It is not difficult to check that D is neither 2-strongly connected nor Hamiltonian. 5

Lemma 4.5: Let D be a 2-strongly connected digraph of order n > 3 and let u, v be two
distinct vertices in D. If D contains no cycle passing through uw and v, then u, v are not
adjacent and there is no path of length two between them. In particular,

dt(u)+d (v)<n—-2, d (u)+d"(v)<n—-2 and d(u)+d(v)<2n—4.

Proof. It is obvious that u, v are not adjacent. Suppose, on the contrary, that in D there is
a path of length two between the vertices u and v, say u — z — v or v — 2z — wu. Since D is
2-strongly connected, it follows that D — z is strongly connected. Therefore, in D — z there is
an (u,v)- and a (v, u)-path. It is easy to see that this (u,v)-path ((v,u)-path, respectively)
together with v — 2z — u (u — z — v, respectively) forms a cycle passing through u and
v. In both cases we have a contradiction, which proves that there is no path of length two
between u and v. Therefore, by Lemma 3.3, d*(u)+d~ (v) <n—2and d” (u)+d*(v) < n—2.
These imply that d(u) + d(v) < 2n — 4. Lemma 4.5 is proved. o

Theorem 4.6: Let D be a 2-strongly connected digraph of order n > 3 satisfying condition
(M). Suppose that {u,v} is a pair of non-adjacent vertices in D such that d(u) + d(v) <
2n — 2. Then D s Hamiltonian or D contains a cycle of length n — 1 passing through u and
avoiding v (passing through v and avoiding u).

Proof. Suppose that D is not Hamiltonian. From Theorem 4.2 it follows that D contains
no cycle passing through u and v. Therefore, by Lemma 4.5, d(u) 4+ d(v) < 2n — 4. Since
D is 2-strongly connected, it follows that D — u and D — v both are strongly connected.
From the last inequality and condition (M) it follows that if {z,y} is a pair of non-adjacent
vertices in D — u (in D — v, respectively), then the following inequalities holds:

d(z, V(D) \{u}) +d(y, V(D) \{u}) = 2(n — 1) — 1,
(d(z, V(D) \ {v}) +d(y, V(D) \ {v}) > 2(n—1) =1, respectively).

Therefore, since D —u and D — v both are strongly connected, by Meyniel’s theorem D — u
and D — v both are Hamiltonian, i.e., D contains a cycle of length n — 1 passing through u



28 On the Manoussakis Conjecture for a Digraph to be Hamiltonian

and avoiding v (passing through v and avoiding u). Theorem 4.6 is proved. 4

As an immediate corollary of Theorems 4.2 and 4.6 (respectively, Theorem 4.6 and Corol-
lary 3.1), we obtain Corollary 4.7 (respectively, Corollary 4.8).

Corollary 4.7: Let D be a 2-strongly connected non-Hamiltonian digraph of order n > 3 sat-
isfying condition (M). Suppose that {u,v} is a pair of non-adjacent vertices in D such that
d(u)+d(v) < 2n—2. Then D contains at most one cycle of length two passing through u (v).

Corollary 4.8: Let D be a 2-strongly connected non-Hamiltonian digraph of order n > 3
satisfying condition (M). Suppose that {u,v} is a pair of non-adjacent vertices in D such
that d(u) + d(v) < 2n —2. Then d(u) <n—1and d(v) <n-—1.

Theorem 4.9: Let D be a 2-strongly connected digraph of order n > 6 satisfying condition
(M). Suppose that {z,y} is a pair of non-adjacent vertices in D such that d(x) + d(y) <
2n — 4. Then D contains cycles of all lengths 3,4, ...,n — 1.

Proof. Suppose first that D contains exactly one pair of non-adjacent vertices, namely
{z,y}. Then D — z is a strongly connected semicomplete digraph. Therefore, by the well-
known theorem of Moser [16], D — x contains cycles of all lengths 3,4,...,n — 1.

Suppose next that D contains at least two distinct pairs of non-adjacent vertices. Let
{u, v} be an arbitrary pair of non-adjacent vertices in V(D) \ {z} (or in V(D) \ {y}). From
condition (M) it follows that

d(u) +d(v) > 2n + 1. (5)

Now we consider the subdigraph H := D — z. For the digraph H we first prove the following
claim.

Claim: If H = K, — e, where e is an arbitrary arc of K7, ., then D contains cycles of all
lengths 2,3,...,n — 1.

Proof. Let {u,v} be an arbitrary pair of non-adjacent vertices in Ky, , —e. Note that
n=2m+1>7. Then

d(u, V(D) \ {z}) + d(v, V(D) \ {z}) < 4m = 2n — 2,

Therefore, by (5), d(x, {u,v}) > 3. This, since m > 3, in turn, implies that every partite set
of H contains at least two vertices such that each of them together with x forms a 2-cycle.
Therefore, there exist two vertices z,w € V(H) such that z < w, z < z and w < z Then,
since for every k, k € [1,m] there is a cycle of length 2k passing through the arc z — w, it
follows that D contains cycles of all lengths 2, 3,...,n. The claim is proved.

We now return to the proof of Theorem 4.9. From (5) it also follows that
d(u, V(D) \ {z}) +d(v, V(D) \ {z}) > 2(n — 1) = 1.

Then, since H is strongly connected, from Theorem 3.7 it follows that either H contains
cycles of all lengths 3,4,....n—1or H e {K}, .., K, —e} U®%_| where n/2 <k <n—2.

,m? n—1s
In order to complete the proof of the theorem, by the above claim it suffices to consider only



S. Darbinyan 29

the case when H € ® . From the definition of the set ®F , it follows that H contains
cycles of all lengths 2,3,...,n — 1 except the cycle of length k.

Let z12,_12n_o... 2921 be a Hamiltonian cycle in H. Since H € @ﬁ_l, it follows that
{z1, 7}, {Tn_k,Tn_1} are two distinct pairs of non-adjacent vertices other than {x,y} and

d(zy, V(H)) + d(zy,, V(H)) = d(@n_g, V(H)) + d(z,_1, V(H)) = 2n — 3.

This together with (5) implies that d(x,{z1, 2, k, 2k, 2n_1) = 8. If k # n — 3, then
T1 — Tp_z and X1T,_3%,_4 ... T,_prry is a cycle of length k. Assume that &k = n — 3. Then
{z1, -3}, {x3, 2,1} are two pairs of non-adjacent vertices other than {z,y}. We have that
d(x, {1, 23,203, Tpn1) = 8, x1 — xp_4 and x3 — x,_1. If 29 — z, then z12,_4... 230007,
is a cycle of length n — 3. Assume that zox ¢ A(D). Then, since the vertices x5 and x,_o
are not adjacent and d(xs) + d(x,_2) > 2n + 1, it is not difficult to see that x5 — x,,_3 and
x — x9. Therefore, xxox,, 37, 4x37 is a cycle of length n — 3. This completes the proof of
the theorem.

In view of Theorem 4.9, it is natural to set the following problem.

Problem: Let D be a 2-strongly connected digraph of order n satisfying condition (M). Sup-
pose that {x,y} is a pair of non-adjacent vertices in D such that 2n—3 < d(x)+d(y) < 2n—2.
Whether D contains cycles of all lengths 3,4,...,n— 17

5. Remarks

In the following, we suppose, further, that D is a 2-strongly connected digraph of order n
satisfying condition (M). Moreover, D contains a pair {y, 2z} of non-adjacent distinct vertices
y, z such that d(y)+d(z) < 2n—4. In this section, we will prove a number of properties of D.

Lemma 5.1: Let x1xy...2, 2221 be a cycle of length n — 1 in D, which does not contain
y. Suppose that v, — xp, x4 — Yy — Tp and v — y — x5, where 1 <s <a<p<g<b<
t <n-—2. Then D is Hamiltonian.

Proof. Suppose, on the contrary, that D is not Hamiltonian. By Theorem 4.2, D contains
no cycle passing through y and z. Notice that there are no integersland r, 1 <[ <r < n—2,
such that z; — y — =, (for otherwise, x;...zyz, ...z, 2221 is a cycle passing through y
and z. If z — x; with i € [a+1,¢], then C(y, 2) = &5 ... TaZp . . . Tp_22T; . .. T YLs;

if x; — z with j € [p,b— 1], then C(y,2) = 21 ...2a%p ... T4yxp . .. xjz2z1. Thus, in both
cases we have a contradiction. Therefore,

d*(z,{Tay1, .., x}) =d (2, {zp, ..., 1p_1}) = 0,

in particular, d(z,{x,,...,2,}) = 0 and the vertices z and x, are not adjacent. The last
equality together with the fact that D contains at most one cycle of length two passing
through z (Corollary 4.7) implies that

d(z) =d(z,{z1,...,zp1})+d(z,{xgs1, .-, Tn-2}) <p—14+n—2—q+1 =n+p—q—2. (6)
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Now we consider the vertex z,. It is easy to see that if z; — z, with i € [1,s — 1],
then C(y,2) = x1...%%p ... TgYTs ... ToTp ... Tpozxy, if x, — z; with j € [t +1,n — 2],
then C(y,2) = o1...2%p ... TYTy Tj...Tp_22x1. In both cases we have a contradiction.
Therefore, we may assume that

d7<«rp7 {xly e 7375—1}) = d+(,]j‘p’ {It+17 e 7‘1:7’1,—2}) = O
This implies that
d(l’p) = d+(xp7 {x17 S 7xs—1}) + d_(xp, {xt+1, e ,.In_g}) + d(Ip, {]}s, e ,xt}) —+ d(‘rlﬂ {y})

<s—14+n—-2—-t+2(t—s+1)=n+t—s—1 (7)

Without loss of generality, we may assume that s, ¢ are chosen as maximal as possible and
p, t are chosen as minimal as possible. Then

d(y,{zss1, .-, xp_1}) = d(y, {zgs1, ..., x-1}) = 0.
This, since D contains at most one cycle of length two passing through y, implies that
d(y) =d(y, {z1,...,xs}) + d(y,{zp, ..., xg}) + d(y,{zt, ..., Tp_2})

<s+qg-p+l4+n—-2—t+1+1l=n+s+q—p—t+1 (8)

Since {y, 2z} and {z,, 2z} are two distinct pairs of non-adjacent vertices, from (6), (7), (8) and
condition (M) it follows that

dn — 3 <d(y) +2d(z) + d(zp) <4n—4— (¢ —p) < 4n —4,
which is a contradiction. Lemma 5.1 is proved.

The following claim is an immediate consequence of Lemma 5.1.

Claim 1: Let x129...2, 2221 be a cycle of length n — 1 in D passing through z. If
Tp_o — Yy — x1 and x1 — X, o, then D is Hamiltonian.

The following claim will be very useful in the remaining proof.

Claim 2: Let zy25...2,_2 be a Hamiltonian path in D — {y, z}. Suppose that for every
pair of integers ¢ and j, 1 <i < j <n—2,if ; — y, then yz; ¢ A(D), and if z; — z, then
zx; ¢ A(D). Then either D is Hamiltonian or for every k € [2,n — 3], the following holds:

A({z1, 20, .. o1} — {Thi1, Thr2s -, Tna}) # 0.

Proof. Suppose, on the contrary, that D is not Hamiltonian and there is an integer k €
[2,n — 3] such that

A<{‘rlax2a . 7%—1} - {$k+175€k+2, . ,ﬂinfz}) =0, (9)

We can assume that the vertices z,, and z; are chosen so that y — x,,, 2 — x; and

d+(y’ {$m+1, te ,In_z}) = dJr(Zu {xH—lv s 7xn—2}) = 0.
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Without loss of generality, we assume that m < [. Since D is 2-strongly connected, it follows
that 2 <m <1 <n — 3. From the supposition of this claim and (9) it follows that:
(i) if K < m or k > [, then (respectively)

A({x1, 29, .. 2k} = {Y, 2, Thr1, T2y oo oy Tpn}) =0

or
A<{y’ 2y X1y L2 - - 71‘]?*1} - {$k+17 Tp42y - 7xn72}) = (Z)a

(i) if m+1<k<Il-1, then
Ay, x1, 20, .. 21} — {2, That, Thaoy - - - Tno}) = 0.

Thus, in each case we have that D — x;, is not strongly connected, which contradicts that D
is 2-strongly connected. Claim 2 is proved.

Lemma 5.2: Suppose that x1xs...x, 2211 is a cycle in D passing through z and avoiding
y. If xp,_o — y — x1, then D is Hamiltonian.

Proof. Suppose, on the contrary, that x, s — y — x; but D is not Hamiltonian. By
Theorem 4.2, D contains no cycle passing through y and z in D. It is easy to see that the
conditions of Claim 2 hold. Let x, — y — x,, where 2 < p < k < n — 3, k minimal and
p maximal with this property. Since D is 2-strongly connected, from Lemma 5.1 it follows
that p < k — 1. This means that there is no cycle of length two passing through y. By
symmetry between the vertices y and z, we may assume that also there is no cycle of length
two passing through z.

Case 1. p=Fk — 1. By Lemma 5.1 we have that

A{zr, .. xpr} = {xps, - xna}) = 0.

Then, by Claim 2, there are some integers i € [1,p — 1] and 5 € [k + 1,n — 2] such that
r; — wp and xx_1 — x;. Therefore, C(y,2) = x1...0kYTk_17; ... Tpo2xy is a cycle
passing through y and z, which is a contradiction.

Case 2. p <k — 2. Then d(y, {zps1,...,%k-1}) = 0. By Lemma 5.1 we have that

A{z1, ..y xpr} = {xps1, - xna}) = 0. (10)

Therefore, by Claim 2, there are s € [1,p—1],a € [p+1,k],b € [p,k—1] and t € [k+1,n—2]
such that x; — z, and x, — ;. If a > b, then 21 ... 2,2, ... 2pYyxy, ... Tp@y ... T2y i
a cycle passing through y and z, which is a contradiction. We may therefore assume that
a<b. Thenp+1<a<0b<k—1and the vertices y and z, are not adjacent. Choose (i) a
and t as maximal as possible and (ii) choose b and s as minimal as possible, subject to (i).
This means that

Az, oy zpart = {ag1, - Tnea)) = A({zr, . 21} — {Zps1, - 20a}) = 0. (11)
From the minimality of s and the maximality of ¢ we have that
d(ze) = d (e, {z1,. . 2 1)) +d (Tas {Tt31, -, Tn2}) + d(Ta, {Ts, ..., 2 }) + d(T4, {2})

<s—14+n—-2—-t4+2t—2s+1=n+t—s—2. (12)
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Let m be the number of vertices of the set {xs;1,...,xp, k, ..., x:—1}, which are not adjacent
to y. Then, since y is not on the cycle of length two and d(y, {zp+1,...,zx-1}) = 0, it follows
that

dy)<n—2—-m—(k—1—p)=n+p—m—k—1. (13)
Assume first that

d (2, {zss1, - 2p)) =d (2, {xp, ..., 21-1}) = 0.

From this and taking into account Lemma 4.5 (there is no path of length two between y and
z) we obtain that

dz)<s+n—-2—t+1+m+k—-1—-p=n+k+m+s—t—p—2. (14)
Combining (12)-(14), k — p > 2 and m > 0, we obtain
2d(y) +d(z,) +d(z) <4dn—6 — (k —p) —m < 4n — 8,

which is a contradiction to condition (M), since {y, 2z} and {y, z,} are two distinct pairs of
non-adjacent vertices.
Assume next that

d (2, {zsi1, .., 2p}) #0 or d(z,{xp,..., ;1)) #0,

i.e., there is a ¢ € [s + 1, p| such that z — z, or there is a r € [k,t — 1] such that z, — 2.

Using Claim 2, we obtain that A({z1,...,2a-1} = {Zay1,- -, Tn2}) # 0. Let x5, — x4,
where s; € [1,a — 1] and t; € [a + 1,n — 2]. From (11) it follows that s; € [p,a — 1] and
t1 € [a+ 1,k]. Choose t; maximal with this property. Then

A{z1, .. xa 1} = {xi41, - x02}) = 0. (15)

Now using the facts that 2 — =z, or z, — =z, it is not difficult to check that: if
tiv > b, then C(y,2) = o1...04&q.. . TpTt ... Tp22Tq...Tg Ty, ... Tpyry or Cly,2) =
Tl .. . TsTg. TpTt. .. Tn_oYTp...Ts Ty, ... Tp201 is & cycle passing through y and z, when
2z — x4 and x, — z, respectively. In both cases we have a contradiction. We may therefore
assume that t; < b.

From Claim 2 we have that A({z1,..., 241} — {@y41, .., Tn_2}) # 0. Let x5, — 24y,
where sy € [1,t; — 1] and t5 € [t +1,n—2]. From (11) and (15) it follows that so € [a,t; —1]
and ty € [t; + 1, k]. Choose t; maximal with this property. Then

A({xy, ..oy 1} — {xgi1, - Tna}) = 0. (16)

Ifto > b, then C(y,2) =21 ... TsZq ... Loy Tty . - . TRYLp . . . Ty, Tty - .. LpLy . . . Tpp_22%7, & CONtTa-
diction. We may therefore assume that ¢t < b. In particular, from t, > ¢ + 1 it follows that
t1 < b.

Using Claim 2, (11) and (16), we obtain that there are some integers s € [t1,t2 — 1] and
ts € [ta + 1, k] such that xs, — x4,. Choose t3 maximal with this properties. Then

A({xy, .. w1} — {Tgi1, - Tna}) = 0. (17)
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If t5 > b, then C(y,2) = 1...TsZg ... TsyTpy - . TpTt .. Ty92Tg ... Ts, Tty - . - Ty Lty - - - TRYT1
or C(y,2) = 1...TsTq ... TeyTty ... TpTt ... Tp2YTp...Ts Ty ... ToyTty ... Tp2T1, When z —
x4 Or x, — 2, respectively. We may therefore assume that t3 < 0. Then ¢, < b.

Again using Claim 2, (11) and (17), we obtain that there are some integers s, €
[ta,t3 — 1] and ty € [ts + 1,k] such that z,, — x,. If ty > b, then C(x,y) =
X1 LsgTpy oo LgyLpy - o Ty Lty « - TRYLp .o . Lgy Ty« Toyglpy - .. TpLy ... Tp_2221, & contradic-
tion. (Here, x5 := x5, and x, = xy,).

Continuing this process, we finally conclude that for some [ > 0, t; > b since all the ver-
tices x4, Xy, , . . ., 2y, are distinct and in {z,,...,z;}. By the above arguments we have that:
if ¢; is even, then C(y,2) = @1 ... TsTty - - - TsyTty - - - Loy Tty - - - Ly Tty - - . TpYLp . . . T, Tty - - .

Tgy Tty - - Ty Tty_y - - TpTt ... o2y, if [ is odd, then C(y, z) = &1 ... TsyTpy - - - Ty Tty - - -
Tgy Tty y oo TpTp oo Tp9ZTg ... Lg Lty - LgyTpy - .. Tg, Ty, - .. TpyZy, OF C(Y, 2) = Ty ... Tgy Ty,

CTsoTty oo Ty Tty oo TpTt oo Ty 2YTp - Ty Ty o Ty Ty - - . Ly Ty, - . . Tp2T1, When z — x4
or x, — z, respectively. In all cases we have a cycle passing through y and z, which contra-
dicts our supposition. Lemma 5.2 is proved.

From Theorem 4.4, Lemma 5.2 and Corollary 4.7 the following corollary follows.
Corollary 5.3: If D is not Hamiltonian, then max{d(y),d(z)} <n — 2.

Lemma 5.4: Let C' = x125... 2, 371 be a cycle of length n — 3 in D passing through y and
avoiding z. Let V(D) \ V(C) = {z,u,v}. If

(1). d(y,{u,v}) =0 and zuvz is a cycle of length 3 or

(i1). d(y) <n —3 and z < u, then D is Hamiltonian.

Proof. Suppose, on the contrary, that D is not Hamiltonian. Then, by Theorem 4.2, D
contains no cycle passing through y and z.

(i). Since d(y,{z,u,v}) = 0 and through y there is at most one cycle of length two, it
follows that d(y) < n — 3. It is easy to see that for every i € [1,n — 3] the following holds:

7[@-,2] + 7[1},:@“] <1, W[xi,u] + E)[Z,l'i+1] <1 and 7[%,1}] + 7[u,xi+l] <1,
(for otherwise, D is Hamiltonian). Therefore,

d(z,V(C)) +d(u, V(C)) + d(v,V(C))
= 5(7[% 2]+ @, x| + @ [ws,u] + @[z, w0] + @ [z, 0] + @ [, wi44]) < 30— 9.
Thenl,slince d(z,{u,v}) <3 and d(u,{z,v}) + d(v,{u, z}) < 7 it follows that d(z) + d(u) +
d(v) < 3n + 1. Therefore, since 2d(y) + d(z) + d(u) > 4n — 3 and d(v) + d(y) > 2n + 1, we
e 6n — 2 < 3d(y) + d(u) + d(v) + d(z) < 6n — 8,

which is a contradiction.
(ii). Then for every i € [1,n — 3] we have @[z, 2] + @ [u,zi11] < 1 and @ '[z;,u] +
@[z, 7441] < 1. Therefore,
n—3
d(z,V(C) +d(u,V(C)) = > _(@[zs, 2| + @ [u, xip1] + @ [z,u] + @[z, 2i41]) < 2n — 6.

i=1
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Hence, d(z) + d(u) < 2n + 1. This together with d(y) < n — 3 and condition (M) gives
dn —3 < d(z) +d(u)+2d(y) <2n+1+2n—6 =2n—5,
which is a contradiction. Lemma 5.4 is proved. o

Lemma 5.5: Let C := x1x5... 1, 421 be a cycle of length n—4 in D passing through y and
avoiding z. Let V(D) \ V(C)) = {z,uy,us, ug}. If one of the following conditions holds

(i). dly) <n—3 and z < uy ,

it). zujusz is a cycle of length 3 and d(y,{ui,us}) =0,

(111). zuyugugz is a cycle of length 4 and d(y,{ui,us,us}) =0, then D is Hamiltonian.

Proof. Suppose, on the contrary, that D is not Hamiltonian. By Theorem 4.2, D contains
no cycle passing through y and z.

(i). Note that y and u; are not adjacent by Lemma 4.5. Since z < uy, it is easy to
see that @ '[z;, 2] + @ [uy, zi11] < 1 and @ [z, u1] + @' [2,741] < 1. Hence, d(z,V(C)) +
d(u1,V(C)) < 2n — 8. Therefore, since, d(uy, {z,us, us}) < 6 and d(z, {u, uz,us3}) < 4, we
have d(z) +d(u1) < 2n+2. This together with d(y) < n — 3 and condition (M) implies that

An — 3 < d(z) +2d(y) + d(uy) < 4n — 4,
which is a contradiction.

(ii). Then it is easy to see that

l |

7[@,2] +7[u2,xi+1] <1, T[xi,ul] +a’[z, ;1) <1 and T[xi,uz] + a'[uy, ziq] < 1.

Hence,
d(2,V(C)) + d(ur, V(C)) + d(us, V(C)) < 3n — 12.

Therefore, since d(z,{u1,us,us}) < 4 and d(uy, {z, us,us}) + d(uz, {z,us,us}) < 11, we
obtain that d(z) + d(u1) + d(u2) < 3n + 3. This together with d(y, {z,u1,us}) = 0 implies
that d(y) < n — 3 and d(z) + d(u1) + d(us) + 3d(y) < 6n — 6. On the other hand, since
d(z) + d(uy) + 2d(y) > 4n — 3 and d(y) + d(uz) > 2n + 1, we have

6n —2 < d(z) + d(ur) + 3d(y) + d(ug) < 6n — 6,

which is a contradiction.
(iii). First, notice that d(y) < n — 4. By an argument similar to that in the proof of (ii),
we can show that

d(Z, V(Cn_4)) + d(ul, V(Cn_4)) + d(UQ, V(Cn_4>) -+ d<U3, V(Cn_4)) S 4n — 16.
Then, since
d(Z, {ula Uz, U’S}) + d(ula {27 Uz, US}) + d(“’?? {ub U2, Z}) + d<u37 {ub U2, Z}) S 207

we have d(z) +d(uy) 4+ d(uz) +d(uz) < 4n+4. Besides, from condition (M) and d(y) < n—4
it follows that

8n — 6 < d(z) +4d(y) + d(uy) + d(uz) + d(us) < 8n — 12,
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which is a contradiction. Lemma 5.5 is proved.

Lemma 5.6: Let C' := x125 ... 2, 521 be a cycle of length n—5 in D passing through y and
avoiding z. Let A=V (D)\ V(C)) = {z,uy,us, ug,us}. If d(y,{us,us}) =0 and zuyusz is
a cycle of length three, then D is Hamiltonian.

Proof. Suppose, on the contrary, that D is not Hamiltohian. By Theorem 4.2, D contains
no cycle passing through y and z. Then d(y) < n—3. It is easy to see that for all i € [1,n—5],

7[1’1,2] +7[U2,l’i+1] S 1, ﬁ[xi,ul] + 7[2,1’1'4,_1] S 1 and 7[(131',?,@] —|—7[U17l’i+1] S 1.

Therefore,
n—>
d(z, V(C>> —|—d(u1, V(O)) —|—d(’LL2, V(C)> = Z(?[[Ez, Z] —f- ?[Ug, xi—l—l] —f- 7[[[’1, Ul] =+ 7[2, Ii—i—l]
i=1
+7[ZIZ’¢,U2] + ﬁ[ul,$i+1]) < 3n — 15.
Since d(z, A) <5 and d(u1, A) + d(ug, A) < 15, it follows that d(z) 4+ d(u1) + d(u2) < 3n+5.
This together with d(y) < n — 3, d(y) + d(u2) > 2n + 1 and condition (M) implies that

6n —2 < d(z) + 3d(y) + d(u1) + d(ug) < 6n — 4,

which is a contradiction. This proves Lemma 5.6.

Lemma 5.7: Suppose that C := x125...2T,_271 is a cycle of length n — 2 in D passing
through y and avoiding z. Let V(D) \ V(C)) = {z,u}. If u < z, then D is Hamiltonian.

Proof. Suppose, on the contrary, that z <» x but D is not Hamiltonian. Then, by Lemma
4.5, the vertices y and z are not adjacent. Hence, d(y) < n—2. Since D is not Hamiltonian,
it follows that for every i € [1,n — 2] we have @[z, 2] + @[, zi41] < 1 and @' [z;, 2] +
@ [20, 7i41] < 1. These imply that d(z) + d(z) < 2n. Therefore, by condition (M), we have

dn —3 < d(z) +d(x) +2d(y) < 4n —4,

which is a contradiction. Lemma 5.7 is proved.

6. Conclusion

In the current article, we have examined the Manoussakis conjecture for a digraph to be
Hamiltonian. For a digraph with the conditions of the Manoussakis conjecture, a number of
theorems and lemmas are proved. Found results may be the first step towards confirming
the Manoussakis conjecture.

Added in proof. Recently, using some results of this paper, the author confirmed the
Manoussakis conjecture.
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Unnuilnpnyuwo qpudph hwdhyunnGyubnipjub Japuptinyug
Uwlnniuwyhuh Jupwoh dwuhG

Uwdyt) lu. dwpphGyul

<< QUU hGpnpiwwmnplugh b wmniwmnwgiwl wpnpiiGhph hGunhmnn
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Udthnthnid

Uwlnnuwyhup (J. of Graph Theory, vol. 16, pp. 51-59, 1992) wnwownlt] £ htnljuy
Jupyuwon:

Juwpywo: “Yhgnip D-G 2-mdtn juyulguwo n-ququpwlh ynniGnpnp)guwo qpud k:
Gpt D-h gulugwo ny Yhg ququpltinh gulijugwo tpynt wwppbip {2, y} b {u, v} qniyqtiph
hwdwn mtinh niGh htwnbgwy d(z) +d(y) +d(w) +d(z) > 4n — 3 wihwjwuwpnipyniGp, wupuw
D-G hwlnhuwGnid L hwdhjnnGju:

‘Uhpjw wpfuwmnwlpnmd wywugnigyt t, np tpk D YnniGnpnpdwo qpudbn pujupwpnid
L Uwlnniuwyhup Jqupywoh yuwjdwGGtphlG, wuyw

(). D qpudp wwpmGuynud E ghyp-pulunnp;

(2). Gpt D-h ny Yhg ququplbph nput {z,y} qnugh hwiwp d(z) + d(y) < 2n — 2,
wwuw (1) D-G hwihpunnGyua £ w6 L dhw)G w)l dwdwluy, tpp D-6 wqupniGwymy « L y
ququplbpny wlglnn YnnuiGnpnpywo ghyg; (i) D-G hwdhpnnGyu6 £ jud ygupniGuynid k
z (y) ququpny wglnn n — 1 tGpupnipjul YnniGnpnpqwd ghy, npp sh wiglmd y (z)
ququpny (Wwulwynpuwtiu, D-G6 qupniGwynd E wnGuql n — 1 GpupmpjwuG ghy) ;

(3). Gpti D-h n3 Yhg ququpltiph npLt {z, y} qnygh hwdwn d(z) +d(y) < 2n —4, wyw
guwlugwo k, 2 < k < n — 1, wlpnne pyh hwiwp D-6G ywpmGuynid E £ Gpupmpjw G
YnnuiGnpnzqwo ghyg;

(4). D qpuph npnpuyh tpyupnipyniGGep (n—>5)-hg dhGsl (n—1)mGhgnn YnniGnpn)Jud
ghyitinh hwiwp wwywgnigyt) GG vh 2wpp wlnmuiGbnp:

fwlwih pwebp” YnniGnpnpguwd qpud, hwidhpnnbyud ghyy, wlmnp ghyy, hudghyhy
ynnulnpnpyuod qpud:

O runortese MaHoyccakuca O TaMUABTOHOBOCTHU Oprpados

CamBen X. AapOuHSAH

WHcTuryT npobaeM nHMOpMaTUKU U aBToMaTn3anuu HAH PA
e-mail: samdarbin@ipia.sci.am

AHHoTanus

Mamnoyccakuc (J. of Graph Theory, vol. 16, pp. 51-59, 1992) mpepro>Kua
CAEAYIOIIYIO TUIIOTE3Y.

Imnoresa: [lycte D gaBAgeTCA 2-CUABHO CBS3HBIM N-BEPIIMHHBIM OprpadoM, B
KOTOPOM AAST ATOOBIX pasAMYHBIX Hap {z,y}, {u, v} HecMe>XHBIX BEPIIMH UMeeT MeCTO



38 On the Manoussakis Conjecture for a Digraph to be Hamiltonian

d(z)+d(y) + d(w) + d(z) > 4n — 3. Torpa D siIBASIETCSI TaAMUABTOHOBBIM.

B mHacTogmert paboTe AOKa3aHO, 4TO eCAU oprpad [ yAOBAETBOPSET YCAOBUAM
runore3a MaHOyCccaKuca, To

(1). D copep>KUT ITUKA-(aKTOP;

(2). EcAu AAS HEKOTOPOUW Tapbl HECMEJKHBIX BEPIIWH T U y UMeeT MecTo d(z) +
d(y) < 2n — 2, To uMeroT Mecto: (i) D sIBASETCS TaMUABTOHOBBIM TOTAQ M TOABKO
TOTAQ, KOrpAd [ COAEP’KUT KOHTYP IIPOXOAAIIUN Yepe3 BEepPIIuH x U ¥, (ii) D aBageTcd
TaMUABTOHOBBIM HMAW COAEP’XKUT KOHTYP AAWHBI n — 1, KOTOPBIM IIPOXOAUT depe3s
BepIIMHY z (y) (B 4aCTHOCTH, D COAEPIKUT KOHTYP AAWHEL IO KpaiHel Mepe n — 1);

(3). EcAu AAS HEKOTOPOW Hapbl HECMEJKHBIX BEPIIWH T U y UMeeT MecTo d(z) +
d(y) <2n —4, To D COAEP>KUT KOHTYP AOOOM AAMHEL k, 3 < k <n — 1;

(4). AOKazaHBI pgA CBOUCTB AASL KOHTYPOB AAWHEL OT . — 5 A0 1 — 1.

KaroueBhIe cAOBa: oprpad), TaMUABTOHOBBIN ITUKA, (DAKTOP ITUKA, TAHIIUKAUUYECKUHN

oprpad.
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