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Abstract

Y. Manoussakis (J. Graph Theory 16, 1992, 51-59) proposed the following conjec-
ture.

Conjecture. Let D be a 2-strongly connected digraph of order n such that for all
distinct pairs of non-adjacent vertices x, y and w, z, we have d(x)+d(y)+d(w)+d(z) ≥
4n− 3. Then D is Hamiltonian.

In this note, we prove that if D satisfies the conditions of this conjecture, then
(i) D has a cycle factor; (ii) If {x, y} is a pair of non-adjacent vertices of D such
that d(x) + d(y) ≤ 2n − 2, then D is Hamiltonian if and only if D contains a cycle
passing through x and y; (iii) If {x, y} a pair of non-adjacent vertices of D such that
d(x)+d(y) ≤ 2n−4, then D contains cycles of all lengths 3, 4, . . . , n−1; (iv) D contains
a cycle of length at least n− 1.
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1. Introduction

In this paper, we consider finite digraphs (directed graphs) without loops and multiple arcs.
Every cycle and path are assumed simple and directed. A digraph D is Hamiltonian if it
contains a cycle passing through all the vertices of D. There are many conditions that guar-
antee that a digraph is Hamiltonian (see, e. g., [1]-[5]). In [5], the following theorem was
proved.

Theorem 1.1: (Manoussakis [5]). Let D be a strongly connected digraph of order n. Suppose
that D satisfies the following condition for every triple x, y, z ∈ V (D) such that x and y are
non-adjacent: If there is no arc from x to z, then d(x) + d(y) + d+(x) + d−(z) ≥ 3n− 2. If
there is no arc from z to x, then d(x)+d(y)+d−(x)+d+(z) ≥ 3n−2. Then D is Hamiltonian.

Definition 1.2: Let D be a digraph of order n. We say that D satisfies condition (M) when
d(x)+d(y)+d(w)+d(z) ≥ 4n−3 for all distinct pairs of non-adjacent vertices x, y and w, z.
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Manoussakis [5] proposed the following conjecture. This conjecture is an extension of
Theorem 1.1

Conjecture 1.3: (Manoussakis [5]). Let G be a 2-strongly connected digraph of or-
der n such that for all distinct pairs of non-adjacent vertices x, y and w, z we have
d(x) + d(y) + d(w) + d(z) ≥ 4n− 3. Then D is Hamiltonian.

This conjecture seems quite difficult to prove. Manoussakis [5] gave an example, which
showed that if the conjecture is true, then the minimum degree condition is sharp. Notice
that another examples can be found in [6], where for any two integers k ≥ 2 and m ≥ 1,
the author constructed a family of k-strongly connected digraphs of order 4k + m with
minimum degree 4k + m− 1, which are not Hamiltonian. This result improves a conjecture
of Thomassen [2] (Conjecture 1.4.1). Moreover, when m = 1, then from these digraphs
we can obtain k-strongly connected non-Hamiltonian digraphs of order n = 4k + 1 with
minimum degree equal to n− 1 and the minimal semi-degrees equal to (n− 3)/2. Thus, if in
Conjecture 1.3 we replace 4n−4 instead of 4n− 3, then for every n there are many digraphs
of order n with high connection and high semi-degrees, for which Conjecture 1.3 is not true.

The author [7] proved the following theorem.

Theorem 1.4: (Darbinyan [7]). Let D be a strongly connected digraph of order n ≥ 3.
Suppose that d(x) + d(y) ≥ 2n− 1 for every pair of non-adjacent vertices x, y ∈ V (D) \ {z},
where z is some vertex of V (D). Then either D is Hamiltonian or contains a cycle of length
n− 1.

It is easy to see that if a digraph D satisfies the condition (M), then it contains at most
one pair of non-adjacent vertices x, y such that d(x)+d(y) ≤ 2n−2. From this and Theorem
1.4 immediately follows the following corollary.

Corollary 1.5: Let G be a strongly connected digraph of order n satisfying condition (M).
Then D contains a cycle of length at least n − 1 (in particular, D contains a Hamiltonian
path).

Corollary 1.5 was also later proved by Ning [8].

In this paper we investigate the properties those digraphs, which satisfy the condition of
Conjecture 1.3. Let D be a 2-strongly connected digraph of order n satisfying the condition
(M) and let {x, y} be a pair of non-adjacent vertices of D. In Section 4 we prove:

(i) D has a cycle factor;

(ii) If d(x) + d(y) ≤ 2n − 2, then D is Hamiltonian if and only if D contains a cycle
passing through x and y;

(iii) If d(x) + d(y) ≤ 2n− 4, then D contains cycles of all lengths 3, 4, . . . , n− 1;

(iv) Suppose that x1x2 . . . xn−2yx1 is a cycle of length n−1 passing through y and avoiding
x. If d(x) + d(y) ≤ 2n− 2 and xn−2 → x → x1, then D is Hamiltonian.
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2. Terminology and Notation

In this paper we consider finite digraphs without loops and multiple arcs. We shall assume
that the reader is familiar with the standard terminology on digraphs and refer to [1] for
terminology and notations not discussed here. The vertex set and the arc set of a digraph D
are denoted by V (D) and A(D), respectively. The order of D is the number of its vertices.
For any x, y ∈ V (D), we also write x → y if xy ∈ A(D). If xy ∈ A(D), y is an out-neighbour
of x and x is an in-neighbour of y. If x → y and y → z, we write x → y → z. Two distinct
vertices x and y are adjacent if xy ∈ A(D) or yx ∈ A(D) (or both). If there is no arc from
x to y, we shall use the notation xy /∈ A(D).

We let N+(x), N−(x) denote the set of out-neighbours, respectively the set of in-
neighbours of a vertex x in a digraph D. If A ⊆ V (D), then N+(x,A) = A ∩ N+(x) and
N−(x,A) = A∩N−(x). The out-degree of x is d+(x) = |N+(x)| and d−(x) = |N−(x)| is the
in-degree of x. Similarly, d+(x, A) = |N+(x,A)| and d−(x,A) = |N−(x,A)|. The degree of
the vertex x in D is defined as d(x) = d+(x)+d−(x) (similarly, d(x,A) = d+(x,A)+d−(x,A)).
The subdigraph of D induced by a subset A of V (D) is denoted by D〈A〉. If z is a vertex of
a digraph D, then the subdigraph D〈V (D) \ {z}〉 is denoted by D − z.

For integers a and b, a ≤ b, let [a, b] denote the set of all integers, which are not less than
a and are not greater than b.

The path (respectively, the cycle) consisting of the distinct vertices x1, x2, . . . , xm ( m ≥
2) and the arcs xixi+1, i ∈ [1,m − 1] (respectively, xixi+1, i ∈ [1,m − 1], and xmx1), is
denoted by x1x2 · · · xm (respectively, x1x2 · · · xmx1). The length of a cycle or path is the
number of its arcs. We say that x1x2 · · · xm is a path from x1 to xm or is an (x1, xm)-path.
Let x and y be two distinct vertices of a digraph D. Cycle that passing through x and y in
D, we denote by C(x, y).

A cycle (respectively, a path) that contains all the vertices of D, is a Hamiltonian cycle
(respectively, is a Hamiltonian path). A digraph is Hamiltonian if it contains a Hamiltonian
cycle. A digraph D of order n ≥ 3 is pancyclic if it contains cycles of all lengths m,
3 ≤ m ≤ n. For a cycle C = x1x2 · · · xkx1 of length k, the subscripts considered modulo k,
i.e., xi = xs for every s and i such that i ≡ s (mod k). If P is a path containing a subpath
from x to y, we let P [x, y] denote that subpath. Similarly, if C is a cycle containing vertices
x and y, C[x, y] denotes the subpath of C from x to y.

A digraph D is strongly connected, if there exists a path from x to y and a path from y
to x for every pair of distinct vertices x, y. A digraph D is k-strongly (k ≥ 1) connected if
|V (D)| ≥ k + 1 and D〈V (D) \A〉 is strongly connected for any subset A ⊂ V (D) of at most
k − 1 vertices.

Let H be a non-trivial proper subdigraph of a digraph D. For the subdigraph H, a H-
bypass is a path of length at least two with both end-vertices in H and no other vertices in H.
If C is a non-Hamiltonian cycle in D and (x, y)-path P is a C-bypass with V (P ) ∩ V (C) =
{x, y}, then we call the length of the path C[x, y] the gap of P with respect to C.

A cycle factor in D is a collection of vertex disjoint cycles C1, . . . , Cl such that V (C1) ∪
. . . ∪ V (Cl) = V (D).

For a pair of disjoint subsets A and B of V (D), we define A(A → B) = {xy ∈ A(D)|x ∈
A, y ∈ B} and A(A,B) = A(A → B) ∪ A(B → A).
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3. Preliminaries

Lemma 3.1: (Häggkvist, Thomassen [9]). Let D be a digraph of ordere n ≥ 3 containing
a cycle C of length m, m ∈ [2, n − 1]. Let x be a vertex not contained in this cycle. If
d(x, V (C)) ≥ m + 1, then D contains a cycle of length k for all k ∈ [2,m + 1].

The following lemma is a modification of a lemma by Bondy and Thomassen [10], its
proof is almost the same.

Lemma 3.2: Let D be a digraph of order n ≥ 3 containing a path P := x1x2 . . . xm,
m ∈ [2, n−1]. Let x be a vertex not contained in this path. If one of the following statements
holds:

(i) d(x, V (P )) ≥ m + 2;
(ii) d(x, V (P )) ≥ m + 1 and xx1 /∈ A(D) or xmx /∈ A(D);
(iii) d(x, V (P )) ≥ m, xx1 /∈ A(D) and xmx /∈ A(D);

then there is an i ∈ [1,m − 1] such that xix, xxi+1 ∈ A(D), i.e., D contains a path
x1x2 . . . xixxi+1 . . . xm of length m (we say that x can be inserted into P or the path
x1x2 . . . xixxi+1 . . . xm is an extended path obtained from P with x).

It is not difficult to prove the following lemma.

Lemma 3.3: Let D be a digraph of order n. Assume that xy /∈ A(D) and the vertices x, y
in D satisfy the degree condition d+(x) + d−(y) ≥ n− 2 + k, where k ≥ 1. Then D contains
at least k internally disjoint (x, y)-paths of length two.

Lemma 3.4: (Bypass Lemma, Bondy [11]). Let D be a strongly connected non-separable
(i.e., UG(D) is 2-connected) digraph and let H be a non-trivial proper subdigraph of D.
Then D contains a H-bypass.

Theorem 3.4: (Yeo [12]). Let D be a digraph. Then D has a cycle factor if and only if V (D)
cannot be partitioned into subsets Y , Z, R1, R2 such that A(Y → R1) = A(R2 → R1∪Y ) = ∅,
|Y | > |Z| and Y is an independent set.

Theorem 3.5: (Meyniel [4]). Let D be a strongly connected digraph of order n ≥ 2. If
d(x) + d(y) ≥ 2n− 1 for all pairs of non-adjacent vertices in D, then D is Hamiltonian.

Before stating the main result of [14], we need to define a family of digraphs.

Definition 3.6: For any integers n and m, (n + 1)/2 < m ≤ n − 1, let Φm
n denote the

set of digraphs D, which satisfy the following conditions: (i) V (D) = {x1, x2, . . . , xn}; (ii)
xnxn−1 . . . x2x1xn is a Hamiltonian cycle in D; (iii) for each k, 1 ≤ k ≤ n − m + 1, the
vertices xk and xk+m−1 are not adjacent; (iv) xjxi /∈ A(D) whenever 2 ≤ i + 1 < j ≤ n and
(v) the sum of degrees for any two distinct non-adjacent vertices at least 2n− 1.

Theorem 3.7: (Darbinyan [13], [14]). Let D be a strongly connected digraph of order n ≥ 3.
Suppose that d(x) + d(y) ≥ 2n − 1 for all pairs of distinct non-adjacent vertices x, y in D.
Then either (a) D is pancyclic or (b) n is even and D is isomorphic to one of K∗

n/2,n/2,
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K∗
n/2,n/2 \ {e}, where e is an arbitrary arc of K∗

n/2,n/2, or (c) D ∈ Φm
n (in this case D does

not contain a cycle of length m).

Later on, Theorem 3.7 was also proved by Benhocine [15].

4. Proofs of the Results

From the definition of condition (M) the following lemma follows.

Lemma 4.1: Let D be a digraph of order n satisfying condition (M). Then D contains at
most one pair of non-adjacent vertices x, y such that d(x) + d(y) ≤ 2n− 2.

Theorem 4.2: Let D be a 2-strongly connected digraph of order n ≥ 3 satisfying condition
(M). Suppose that {x, y} is a pair of non-adjacent vertices of D such that d(x) + d(y) ≤
2n−2. Then D is Hamiltonian if and only if D contains a cycle passing through the vertices
x and y.

Proof. If D is Hamiltonian, then obviously it contain a cycle passing through x and y.
Suppose that D contains a cycle passing through the vertices x and y but D is not Hamil-
tonian. Let C be a longest cycle, say of length m, passing through x and y. Since D
is not Hamiltonian, we have that m ≤ n − 1. From 2-connectednees of D and Bypass-
Lemma it follows that there is a C-bypass, say P = uy1y2 . . . ykv, where u, v ∈ V (C) and
y1, y2, . . . , yk ∈ V (D) \ V (C). Without loss of generality, assume that the gap |C[u, v]| − 1
of P is the minimum among the gaps of all C-bypasses. Then

A(V (C[u, v]) \ {u, v}, V (P [y1, yk])) = ∅. (1)

Put f := |V (C[u, v]) \ {u, v}|. Since C is a longest cycle passing through x and y, it follows
that f ≥ 1. Now we extend the path C[v, u] with the vertices of V (C[u, v]) \ {u, v} as mach
as possible. We obtain a (v, u)-path, say R. Then, since C is a longest cycle passing through
x and y, R does not contain some vertices u1, u2, . . . , ud of V (C[u, v])\{u, v}. Using (1) and
Lemma 3.2(i), for all yj and ui we obtain

d(yj, V (C)) ≤ m−f +1 and d(ui, V (C)) = d(ui, V (R))+d(ui, {u1, . . . , ud}) ≤ m+d−1.

By the minimality of the gap f + 1 we also have that D contains no path of the form yjzui

and uizyj, where z ∈ B := V (D) \ (V (C) ∪ {y1, . . . , yk}). Therefore,

d(ui, B) + d(yj, B) ≤ 2|B|.

Now by a simple calculation we obtain

d(ui)+d(yj) = d(ui, V (C))+d(yj, V (C))+d(ui, B)+d(yj, B)+d(ui, P [y1, yk])+d(yj, P [y1, yk])

≤ m + d− 1 + m− f + 1 + 2|B|+ 2k − 2 ≤ 2n− 2,

a contradiction with Lemma 4.1 since ui and yj are not adjacent and {ui, yj} 6= {x, y}.
Theorem 4.2 is proved.
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Clearly, the existence of a cycle factor is a necessary condition for a digraph to be Hamil-
tonian.

Theorem 4.3: Let D be a 2-strongly connected digraph of order n satisfying condition (M).
Then D has a cycle factor.

Proof. Suppose, on the contrary, that D has no cycle factor. By the Yeo theorem, V (D)
can be partitioned into subsets Y , Z, R1, R2 such that A(Y → R1) = A(R2 → R1 ∪ Y ) = ∅,
|Y | > |Z| and Y is an independent set. Using these and 2-connectedness of D, we obtain
that it follows that |Z| ≥ 2 and hence, |Y | ≥ 3. Let x, y, z be three distinct vertices of
Y . Since Y is an independent set, we have that {x, y} and {x, z} are two distinct pairs of
non-adjacent vertices of V (D). Now using condition (M), we obtain

4n−3 ≤ 2d(x)+d(y)+d(z) ≤ 8|Z|+4|R1|+4|R2|+4|Y |−4|Y | = 4n−4(|Y |−|Z|) ≤ 4n−4,

a contradiction. Theorem 4.3 is proved.

Using Yeo’s theorem, it is not difficult to show that in Theorem 4.3 the minimum degree
condition is sharp.

Theorem 4.4: Let D be a 2-strongly connected digraph of order n ≥ 3. Suppose that D
contains at most one pair of non-adjacent vertices. Then D is Hamiltonian.

Proof. Suppose, on the contrary, that D is not Hamiltonian. Therefore, D is not semicom-
plete and contains exactly one pair, say {x, y}, of non-adjacent vertices. Then d(x) ≥ n− 2,
d(y) ≥ n− 2 and d(z) ≥ n− 1 for all z ∈ V (D)−{x, y}. Since D is 2-strongly connected, it
follows that both subdigraphs D − x and D − y both are strongly connected semicomplete
digraphs. Therefore, D − x and D − y both are Hamiltonian. Let Cn−1 := x1x2 . . . xn−2yx1

be a Hamiltonian cycle in D − x. Since D is not Hamiltonian, from d(x) ≥ n − 2 and the
fact that x is adjacent to every vertex of V (D)− {y} it follows that there exists an integer
l ∈ [2, n− 3] such that

{xl+1, xl+2, . . . , xn−2} → x → {x1, x2, . . . , xl}. (2)

Similarly, for some k ∈ [2, n− 3] we have

{xk+1, xk+2, . . . , xn−2} → y → {x1, x2, . . . , xk}. (3)

Observe that for every pair of integers i, j, 1 ≤ i < j ≤ n − 2, in D there is no path of the
types xi → y → xj and xi → z → xj. By symmetry between x and y, we may assume that
k ≥ l. Then by (2), (3) and our observation we have

A({x, y} → {xk+1, xk+2, . . . , xn−2}) = ∅ and {xk+1, xk+2, . . . , xn−2} → {x, y}. (4)

From (4) and 2-connectedness of D it follows that there exist i ∈ [1, k−1] and j ∈ [k+1, n−2]
such that xi → xj (for otherwise, A({x1, x2, . . . , xk−1, x, y} → {xk+1, xk+2, . . . , xn−2}) = ∅,
which means that D − xk is not strongly connected). Note that y → xi+1. We choose
j maximal with these properties. Using (2) and (3), it is easy to see that if xj−1 → x,
then x1 . . . xixj . . . xn−2yxi+1 . . . xj−1xx1 is a Hamiltonian cycle, which contradicts our sup-
position. We may therefore assume that xj−1x /∈ A(D). Then from k ≥ l, (4) and
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the maximality of j it follows that j = k + 1 and xkx /∈ A(D). Hence, l = k
and A({x1, x2, . . . , xk−1} → {xk+2, xk+3, . . . , xn−2}) = ∅. This together with (4) and 2-
connectedness of D implies that there is an integer s ∈ [k + 2, n − 2] such that xk → xs.
Therefore, x1 . . . xixk+1 . . . xs−1xxi+1 . . . xkxs . . . xn−2yx1 is a Hamiltonian cycle, a contradic-
tion. Theorem 4.4 is proved.

Remark: There is a strongly connected non-Hamiltonian digraph of order n ≥ 5, which is
not 2-strongly connected and has exactly one pair of non-adjacent vertices.

To see this, consider the following digraph D defined as follows:
V (D) = {x1, x2, . . . , xn−2, y, z}, x1x2, . . . xn−2yx1 is a cycle of length n− 1 in D,

N−(y) = N−(z) = {xk, xk+1, . . . , xn−2} and N+(y) = N+(z) = {x1, x2, . . . , xk},
where k ∈ [2, n − 3], D also contains all the arcs xjxi whenever 1 ≤ i < j ≤ n − 2 and it
contain no other arcs.

It is not difficult to check that D is neither 2-strongly connected nor Hamiltonian.

Lemma 4.5: Let D be a 2-strongly connected digraph of order n ≥ 3 and let u, v be two
distinct vertices in D. If D contains no cycle passing through u and v, then u, v are not
adjacent and there is no path of length two between them. In particular,

d+(u) + d−(v) ≤ n− 2, d−(u) + d+(v) ≤ n− 2 and d(u) + d(v) ≤ 2n− 4.

Proof. It is obvious that u, v are not adjacent. Suppose, on the contrary, that in D there is
a path of length two between the vertices u and v, say u → z → v or v → z → u. Since D is
2-strongly connected, it follows that D−z is strongly connected. Therefore, in D−z there is
an (u, v)- and a (v, u)-path. It is easy to see that this (u, v)-path ((v, u)-path, respectively)
together with v → z → u (u → z → v, respectively) forms a cycle passing through u and
v. In both cases we have a contradiction, which proves that there is no path of length two
between u and v. Therefore, by Lemma 3.3, d+(u)+d−(v) ≤ n−2 and d−(u)+d+(v) ≤ n−2.
These imply that d(u) + d(v) ≤ 2n− 4. Lemma 4.5 is proved.

Theorem 4.6: Let D be a 2-strongly connected digraph of order n ≥ 3 satisfying condition
(M). Suppose that {u, v} is a pair of non-adjacent vertices in D such that d(u) + d(v) ≤
2n− 2. Then D is Hamiltonian or D contains a cycle of length n− 1 passing through u and
avoiding v (passing through v and avoiding u).

Proof. Suppose that D is not Hamiltonian. From Theorem 4.2 it follows that D contains
no cycle passing through u and v. Therefore, by Lemma 4.5, d(u) + d(v) ≤ 2n − 4. Since
D is 2-strongly connected, it follows that D − u and D − v both are strongly connected.
From the last inequality and condition (M) it follows that if {x, y} is a pair of non-adjacent
vertices in D − u (in D − v, respectively), then the following inequalities holds:

d(x, V (D) \ {u}) + d(y, V (D) \ {u}) ≥ 2(n− 1)− 1,

(d(x, V (D) \ {v}) + d(y, V (D) \ {v}) ≥ 2(n− 1)− 1, respectively).

Therefore, since D− u and D− v both are strongly connected, by Meyniel’s theorem D− u
and D − v both are Hamiltonian, i.e., D contains a cycle of length n− 1 passing through u
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and avoiding v (passing through v and avoiding u). Theorem 4.6 is proved.

As an immediate corollary of Theorems 4.2 and 4.6 (respectively, Theorem 4.6 and Corol-
lary 3.1), we obtain Corollary 4.7 (respectively, Corollary 4.8).

Corollary 4.7: Let D be a 2-strongly connected non-Hamiltonian digraph of order n ≥ 3 sat-
isfying condition (M). Suppose that {u, v} is a pair of non-adjacent vertices in D such that
d(u)+d(v) ≤ 2n−2. Then D contains at most one cycle of length two passing through u (v).

Corollary 4.8: Let D be a 2-strongly connected non-Hamiltonian digraph of order n ≥ 3
satisfying condition (M). Suppose that {u, v} is a pair of non-adjacent vertices in D such
that d(u) + d(v) ≤ 2n− 2. Then d(u) ≤ n− 1 and d(v) ≤ n− 1 .

Theorem 4.9: Let D be a 2-strongly connected digraph of order n ≥ 6 satisfying condition
(M). Suppose that {x, y} is a pair of non-adjacent vertices in D such that d(x) + d(y) ≤
2n− 4. Then D contains cycles of all lengths 3, 4, . . . , n− 1.

Proof. Suppose first that D contains exactly one pair of non-adjacent vertices, namely
{x, y}. Then D − x is a strongly connected semicomplete digraph. Therefore, by the well-
known theorem of Moser [16], D − x contains cycles of all lengths 3, 4, . . . , n− 1.

Suppose next that D contains at least two distinct pairs of non-adjacent vertices. Let
{u, v} be an arbitrary pair of non-adjacent vertices in V (D) \ {x} (or in V (D) \ {y}). From
condition (M) it follows that

d(u) + d(v) ≥ 2n + 1. (5)

Now we consider the subdigraph H := D−x. For the digraph H we first prove the following
claim.

Claim: If H ∼= K∗
m,m− e, where e is an arbitrary arc of K∗

m,m, then D contains cycles of all
lengths 2, 3, . . . , n− 1.

m,m − e. Note that
n = 2m + 1 ≥ 7. Then

d(u, V (D) \ {x}) + d(v, V (D) \ {x}) ≤ 4m = 2n− 2.

Therefore, by (5), d(x, {u, v}) ≥ 3. This, since m ≥ 3, in turn, implies that every partite set
of H contains at least two vertices such that each of them together with x forms a 2-cycle.
Therefore, there exist two vertices z, w ∈ V (H) such that z ↔ w, z ↔ x and w ↔ x Then,
since for every k, k ∈ [1,m] there is a cycle of length 2k passing through the arc z → w, it
follows that D contains cycles of all lengths 2, 3, . . . , n. The claim is proved.

We now return to the proof of Theorem 4.9. From (5) it also follows that

d(u, V (D) \ {x}) + d(v, V (D) \ {x}) ≥ 2(n− 1)− 1.

Then, since H is strongly connected, from Theorem 3.7 it follows that either H contains
cycles of all lengths 3, 4, . . . , n− 1 or H ∈ {K∗

m,m, K∗
m,m− e}∪Φk

n−1, where n/2 < k ≤ n− 2.
In order to complete the proof of the theorem, by the above claim it suffices to consider only

Proof. Let {u, v} be an arbitrary pair of non-adjacent vertices in K∗
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the case when H ∈ Φk
n−1. From the definition of the set Φk

n−1 it follows that H contains
cycles of all lengths 2, 3, . . . , n− 1 except the cycle of length k.

Let x1xn−1xn−2 . . . x2x1 be a Hamiltonian cycle in H. Since H ∈ Φk
n−1, it follows that

{x1, xk}, {xn−k, xn−1} are two distinct pairs of non-adjacent vertices other than {x, y} and

d(x1, V (H)) + d(xk, V (H)) = d(xn−k, V (H)) + d(xn−1, V (H)) = 2n− 3.

This together with (5) implies that d(x, {x1, xn−k, xk, xn−1) = 8. If k 6= n − 3, then
x1 → xn−3 and x1xn−3xn−4 . . . xn−kxx1 is a cycle of length k. Assume that k = n− 3. Then
{x1, xn−3}, {x3, xn−1} are two pairs of non-adjacent vertices other than {x, y}. We have that
d(x, {x1, x3, xn−3, xn−1) = 8, x1 → xn−4 and x3 → xn−1. If x2 → x, then x1xn−4...x3x2xx1

is a cycle of length n − 3. Assume that x2x /∈ A(D). Then, since the vertices x2 and xn−2

are not adjacent and d(x2) + d(xn−2) ≥ 2n + 1, it is not difficult to see that x2 → xn−3 and
x → x2. Therefore, xx2xn−3xn−4x3x is a cycle of length n− 3. This completes the proof of
the theorem.

In view of Theorem 4.9, it is natural to set the following problem.

Problem: Let D be a 2-strongly connected digraph of order n satisfying condition (M). Sup-
pose that {x, y} is a pair of non-adjacent vertices in D such that 2n−3 ≤ d(x)+d(y) ≤ 2n−2.
Whether D contains cycles of all lengths 3, 4, . . . , n− 1?

5. Remarks

In the following, we suppose, further, that D is a 2-strongly connected digraph of order n
satisfying condition (M). Moreover, D contains a pair {y, z} of non-adjacent distinct vertices
y, z such that d(y)+d(z) ≤ 2n−4. In this section, we will prove a number of properties of D.

Lemma 5.1: Let x1x2 . . . xn−2zx1 be a cycle of length n − 1 in D, which does not contain
y. Suppose that xa → xb, xq → y → xp and xt → y → xs, where 1 ≤ s ≤ a < p ≤ q < b ≤
t ≤ n− 2. Then D is Hamiltonian.

Proof. Suppose, on the contrary, that D is not Hamiltonian. By Theorem 4.2, D contains
no cycle passing through y and z. Notice that there are no integers l and r, 1 ≤ l < r ≤ n−2,
such that xl → y → xr (for otherwise, x1 . . . xlyxr . . . xn−2zx1 is a cycle passing through y
and z. If z → xi with i ∈ [a + 1, q], then C(y, z) = xs . . . xaxb . . . xn−2zxi . . . xqyxs;

if xj → z with j ∈ [p, b− 1], then C(y, z) = x1 . . . xaxb . . . xtyxp . . . xjzx1. Thus, in both
cases we have a contradiction. Therefore,

d+(z, {xa+1, . . . , xq}) = d−(z, {xp, . . . , xb−1}) = 0,

in particular, d(z, {xp, . . . , xq}) = 0 and the vertices z and xp are not adjacent. The last
equality together with the fact that D contains at most one cycle of length two passing
through z (Corollary 4.7) implies that

d(z) = d(z, {x1, . . . , xp−1})+d(z, {xq+1, . . . , xn−2}) ≤ p−1+n−2−q+1 = n+p−q−2. (6)
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Now we consider the vertex xp. It is easy to see that if xi → xp with i ∈ [1, s − 1],
then C(y, z) = x1 . . . xixp . . . xqyxs . . . xaxb . . . xn−2zx1, if xp → xj with j ∈ [t + 1, n − 2],
then C(y, z) = x1 . . . xaxb . . . xtyxp xj . . . xn−2zx1. In both cases we have a contradiction.
Therefore, we may assume that

d−(xp, {x1, . . . , xs−1}) = d+(xp, {xt+1, . . . , xn−2}) = 0.

This implies that

d(xp) = d+(xp, {x1, . . . , xs−1}) + d−(xp, {xt+1, . . . , xn−2}) + d(xp, {xs, . . . , xt}) + d(xp, {y})

≤ s− 1 + n− 2− t + 2(t− s + 1) = n + t− s− 1. (7)

Without loss of generality, we may assume that s, q are chosen as maximal as possible and
p, t are chosen as minimal as possible. Then

d(y, {xs+1, . . . , xp−1}) = d(y, {xq+1, . . . , xt−1}) = 0.

This, since D contains at most one cycle of length two passing through y, implies that

d(y) = d(y, {x1, . . . , xs}) + d(y, {xp, . . . , xq}) + d(y, {xt, . . . , xn−2})

≤ s + q − p + 1 + n− 2− t + 1 + 1 = n + s + q − p− t + 1. (8)

Since {y, z} and {xp, z} are two distinct pairs of non-adjacent vertices, from (6), (7), (8) and
condition (M) it follows that

4n− 3 ≤ d(y) + 2d(z) + d(xp) ≤ 4n− 4− (q − p) ≤ 4n− 4,

which is a contradiction. Lemma 5.1 is proved.

The following claim is an immediate consequence of Lemma 5.1.

Claim 1: Let x1x2 . . . xn−2zx1 be a cycle of length n − 1 in D passing through z. If
xn−2 → y → x1 and x1 → xn−2, then D is Hamiltonian.

The following claim will be very useful in the remaining proof.

Claim 2: Let x1x2 . . . xn−2 be a Hamiltonian path in D − {y, z}. Suppose that for every
pair of integers i and j, 1 ≤ i < j ≤ n− 2, if xi → y, then yxj /∈ A(D), and if xi → z, then
zxj /∈ A(D). Then either D is Hamiltonian or for every k ∈ [2, n− 3], the following holds:

A({x1, x2, . . . , xk−1} → {xk+1, xk+2, . . . , xn−2}) 6= ∅.

Proof. Suppose, on the contrary, that D is not Hamiltonian and there is an integer k ∈
[2, n− 3] such that

A({x1, x2, . . . , xk−1} → {xk+1, xk+2, . . . , xn−2}) = ∅, (9)

We can assume that the vertices xm and xl are chosen so that y → xm, z → xl and

d+(y, {xm+1, . . . , xn−2}) = d+(z, {xl+1, . . . , xn−2}) = 0.
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Without loss of generality, we assume that m ≤ l. Since D is 2-strongly connected, it follows
that 2 ≤ m ≤ l ≤ n− 3. From the supposition of this claim and (9) it follows that:

(i) if k ≤ m or k ≥ l, then (respectively)

A({x1, x2, . . . , xk−1} → {y, z, xk+1, xk+2, . . . , xn−2}) = ∅
or

A({y, z, x1, x2, . . . , xk−1} → {xk+1, xk+2, . . . , xn−2}) = ∅,
(ii) if m + 1 ≤ k ≤ l − 1, then

A({y, x1, x2, . . . , xk−1} → {z, xk+1, xk+2, . . . , xn−2}) = ∅.
Thus, in each case we have that D− xk is not strongly connected, which contradicts that D
is 2-strongly connected. Claim 2 is proved.

Lemma 5.2: Suppose that x1x2 . . . xn−2zx1 is a cycle in D passing through z and avoiding
y. If xn−2 → y → x1, then D is Hamiltonian.

Proof. Suppose, on the contrary, that xn−2 → y → x1 but D is not Hamiltonian. By
Theorem 4.2, D contains no cycle passing through y and z in D. It is easy to see that the
conditions of Claim 2 hold. Let xk → y → xp, where 2 ≤ p ≤ k ≤ n − 3, k minimal and
p maximal with this property. Since D is 2-strongly connected, from Lemma 5.1 it follows
that p ≤ k − 1. This means that there is no cycle of length two passing through y. By
symmetry between the vertices y and z, we may assume that also there is no cycle of length
two passing through z.
Case 1. p = k − 1. By Lemma 5.1 we have that

A({x1, . . . , xp−1} → {xk+1, . . . , xn−2}) = ∅.
Then, by Claim 2, there are some integers i ∈ [1, p − 1] and j ∈ [k + 1, n − 2] such that
xi → xk and xk−1 → xj. Therefore, C(y, z) = x1 . . . xixkyxk−1xj . . . xn−2zx1 is a cycle
passing through y and z, which is a contradiction.
Case 2. p ≤ k − 2. Then d(y, {xp+1, . . . , xk−1}) = 0. By Lemma 5.1 we have that

A({x1, . . . , xp−1} → {xk+1, . . . , xn−2}) = ∅. (10)

Therefore, by Claim 2, there are s ∈ [1, p−1], a ∈ [p+1, k], b ∈ [p, k−1] and t ∈ [k+1, n−2]
such that xs → xa and xb → xt. If a > b, then x1 . . . xsxa . . . xkyxp . . . xbxt . . . xn−2zx1 is
a cycle passing through y and z, which is a contradiction. We may therefore assume that
a ≤ b. Then p + 1 ≤ a ≤ b ≤ k− 1 and the vertices y and xa are not adjacent. Choose (i) a
and t as maximal as possible and (ii) choose b and s as minimal as possible, subject to (i).
This means that

A({x1, . . . , xp−1} → {xa+1, . . . , xn−2}) = A({x1, . . . , xb−1} → {xk+1, . . . , xn−2}) = ∅. (11)

From the minimality of s and the maximality of t we have that

d(xa) = d+(xa, {x1, . . . , xs−1}) + d−(xa, {xt+1, . . . , xn−2}) + d(xa, {xs, . . . , xt}) + d(xa, {z})
≤ s− 1 + n− 2− t + 2t− 2s + 1 = n + t− s− 2. (12)
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Let m be the number of vertices of the set {xs+1, . . . , xp, xk, . . . , xt−1}, which are not adjacent
to y. Then, since y is not on the cycle of length two and d(y, {xp+1, . . . , xk−1}) = 0, it follows
that

d(y) ≤ n− 2−m− (k − 1− p) = n + p−m− k − 1. (13)

Assume first that

d+(z, {xs+1, . . . , xp}) = d−(z, {xk, . . . , xt−1}) = 0.

From this and taking into account Lemma 4.5 (there is no path of length two between y and
z) we obtain that

d(z) ≤ s + n− 2− t + 1 + m + k − 1− p = n + k + m + s− t− p− 2. (14)

Combining (12)-(14), k − p ≥ 2 and m ≥ 0, we obtain

2d(y) + d(xa) + d(z) ≤ 4n− 6− (k − p)−m ≤ 4n− 8,

which is a contradiction to condition (M), since {y, z} and {y, xa} are two distinct pairs of
non-adjacent vertices.

Assume next that

d+(z, {xs+1, . . . , xp}) 6= 0 or d−(z, {xk, . . . , xt−1}) 6= 0,

i.e., there is a q ∈ [s + 1, p] such that z → xq or there is a r ∈ [k, t− 1] such that xr → z.
Using Claim 2, we obtain that A({x1, . . . , xa−1} → {xa+1, . . . , xn−2}) 6= ∅. Let xs1 → xt1 ,

where s1 ∈ [1, a − 1] and t1 ∈ [a + 1, n − 2]. From (11) it follows that s1 ∈ [p, a − 1] and
t1 ∈ [a + 1, k]. Choose t1 maximal with this property. Then

A({x1, . . . , xa−1} → {xt1+1, . . . , xn−2}) = ∅. (15)

Now using the facts that z → xq or xr → z, it is not difficult to check that: if
t1 > b, then C(y, z) = x1 . . . xsxa . . . xbxt . . . xn−2zxq . . . xs1xt1 . . . xkyx1 or C(y, z) =
x1 . . . xsxa . . . xbxt . . . xn−2yxp . . . xs1xt1 . . . xrzx1 is a cycle passing through y and z, when
z → xq and xr → z, respectively. In both cases we have a contradiction. We may therefore
assume that t1 ≤ b.

From Claim 2 we have that A({x1, . . . , xt1−1} → {xt1+1, . . . , xn−2}) 6= ∅. Let xs2 → xt2 ,
where s2 ∈ [1, t1−1] and t2 ∈ [t1 +1, n−2]. From (11) and (15) it follows that s2 ∈ [a, t1−1]
and t2 ∈ [t1 + 1, k]. Choose t2 maximal with this property. Then

A({x1, . . . , xt1−1} → {xt2+1, . . . , xn−2}) = ∅. (16)

If t2 > b, then C(y, z) = x1 . . . xsxa . . . xs2xt2 . . . xkyxp . . . xs1xt1 . . . xbxt . . . xn−2zx1, a contra-
diction. We may therefore assume that t2 ≤ b. In particular, from t2 ≥ t1 + 1 it follows that
t1 < b.

Using Claim 2, (11) and (16), we obtain that there are some integers s3 ∈ [t1, t2− 1] and
t3 ∈ [t2 + 1, k] such that xs3 → xt3 . Choose t3 maximal with this properties. Then

A({x1, . . . , xt2−1} → {xt3+1, . . . , xn−2}) = ∅. (17)
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If t3 > b, then C(y, z) = x1 . . . xsxa . . . xs2xt2 . . . xbxt . . . xn−2zxq . . . xs1xt1 . . . xs3xt3 . . . xkyx1

or C(y, z) = x1 . . . xsxa . . . xs2xt2 . . . xbxt . . . xn−2yxp . . . xs1xt1 . . . xs3xt3 . . . xrzx1, when z →
xq or xr → z, respectively. We may therefore assume that t3 ≤ b. Then t2 < b.

Again using Claim 2, (11) and (17), we obtain that there are some integers s4 ∈
[t2, t3 − 1] and t4 ∈ [t3 + 1, k] such that xs4 → xt4 . If t4 > b, then C(x, y) =
x1 . . . xs0xt0 . . . xs2xt2 . . . xs4xt4 . . . xkyxp . . . xs1xt1 . . . xs3xt3 . . . xbxt . . . xn−2zx1, a contradic-
tion. (Here, xs := xs0 and xa = xt0).

Continuing this process, we finally conclude that for some l ≥ 0, tl > b since all the ver-
tices xt0 , xt1 , . . . , xtl are distinct and in {xp, . . . , xk}. By the above arguments we have that:
if tl is even, then C(y, z) = x1 . . . xs0xt0 . . . xs2xt2 . . . xs4xt4 . . . xsl

xtl . . . xkyxp . . . xs1xt1 . . .
xs3 xt3 . . . xsl−1

xtl−1
. . . xbxt . . . xn−2zx1, if l is odd, then C(y, z) = x1 . . . xs0xt0 . . . xs2xt2 . . .

xsl−1
xtl−1

. . . xbxt . . . xn−2zxq . . . xs1xt1 . . . xs3xt3 . . . xsl
xtl . . . xkyx1, or C(y, z) = x1 . . . xs0xt0

. . . xs2xt2 . . . xsl−1
xtl−1

. . . xbxt . . . xn−2yxp . . . xs1xt1 . . . xs3xt3 . . . xsl
xtl . . . xrzx1, when z → xq

or xr → z, respectively. In all cases we have a cycle passing through y and z, which contra-
dicts our supposition. Lemma 5.2 is proved.

From Theorem 4.4, Lemma 5.2 and Corollary 4.7 the following corollary follows.

Corollary 5.3: If D is not Hamiltonian, then max{d(y), d(z)} ≤ n− 2.

Lemma 5.4: Let C = x1x2 . . . xn−3x1 be a cycle of length n− 3 in D passing through y and
avoiding z. Let V (D) \ V (C) = {z, u, v}. If

(i). d(y, {u, v}) = 0 and zuvz is a cycle of length 3 or
(ii). d(y) ≤ n− 3 and z ↔ u, then D is Hamiltonian.

Proof. Suppose, on the contrary, that D is not Hamiltonian. Then, by Theorem 4.2, D
contains no cycle passing through y and z.

(i). Since d(y, {z, u, v}) = 0 and through y there is at most one cycle of length two, it
follows that d(y) ≤ n− 3. It is easy to see that for every i ∈ [1, n− 3] the following holds:

−→a [xi, z] +−→a [v, xi+1] ≤ 1, −→a [xi, u] +−→a [z, xi+1] ≤ 1 and −→a [xi, v] +−→a [u, xi+1] ≤ 1,

(for otherwise, D is Hamiltonian). Therefore,

d(z, V (C)) + d(u, V (C)) + d(v, V (C))

=
n−3∑

i=1

(−→a [xi, z] +−→a [v, xi+1] +−→a [xi, u] +−→a [z, xi+1] +−→a [xi, v] +−→a [u, xi+1]) ≤ 3n− 9.

Then, since d(z, {u, v}) ≤ 3 and d(u, {z, v}) + d(v, {u, z}) ≤ 7 it follows that d(z) + d(u) +
d(v) ≤ 3n + 1. Therefore, since 2d(y) + d(z) + d(u) ≥ 4n− 3 and d(v) + d(y) ≥ 2n + 1, we
have

6n− 2 ≤ 3d(y) + d(u) + d(v) + d(z) ≤ 6n− 8,

which is a contradiction.
(ii). Then for every i ∈ [1, n − 3] we have −→a [xi, z] + −→a [u, xi+1] ≤ 1 and −→a [xi, u] +−→a [z, xi+1] ≤ 1. Therefore,

d(z, V (C)) + d(u, V (C)) =
n−3∑

i=1

(−→a [xi, z] +−→a [u, xi+1] +−→a [xi, u] +−→a [z, xi+1]) ≤ 2n− 6.
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Hence, d(z) + d(u) ≤ 2n + 1. This together with d(y) ≤ n− 3 and condition (M) gives

4n− 3 ≤ d(z) + d(u) + 2d(y) ≤ 2n + 1 + 2n− 6 = 2n− 5,

which is a contradiction. Lemma 5.4 is proved.

Lemma 5.5: Let C := x1x2 . . . xn−4x1 be a cycle of length n− 4 in D passing through y and
avoiding z. Let V (D) \ V (C)) = {z, u1, u2, u3}. If one of the following conditions holds

(i). d(y) ≤ n− 3 and z ↔ u1 ,
ii). zu1u2z is a cycle of length 3 and d(y, {u1, u2}) = 0,
(iii). zu1u2u3z is a cycle of length 4 and d(y, {u1, u2, u3}) = 0, then D is Hamiltonian.

Proof. Suppose, on the contrary, that D is not Hamiltonian. By Theorem 4.2, D contains
no cycle passing through y and z.

(i). Note that y and u1 are not adjacent by Lemma 4.5. Since z ↔ u1, it is easy to
see that −→a [xi, z] + −→a [u1, xi+1] ≤ 1 and −→a [xi, u1] + −→a [z, xi+1] ≤ 1. Hence, d(z, V (C)) +
d(u1, V (C)) ≤ 2n − 8. Therefore, since, d(u1, {z, u2, u3}) ≤ 6 and d(z, {u1, u2, u3}) ≤ 4, we
have d(z)+ d(u1) ≤ 2n+2. This together with d(y) ≤ n− 3 and condition (M) implies that

4n− 3 ≤ d(z) + 2d(y) + d(u1) ≤ 4n− 4,

which is a contradiction.
(ii). Then it is easy to see that

−→a [xi, z] +−→a [u2, xi+1] ≤ 1, −→a [xi, u1] +
−→a [z, xi+1] ≤ 1 and −→a [xi, u2] +

−→a [u1, xi+1] ≤ 1.

Hence,
d(z, V (C)) + d(u1, V (C)) + d(u2, V (C)) ≤ 3n− 12.

Therefore, since d(z, {u1, u2, u3}) ≤ 4 and d(u1, {z, u2, u3}) + d(u2, {z, u1, u3}) ≤ 11, we
obtain that d(z) + d(u1) + d(u2) ≤ 3n + 3. This together with d(y, {z, u1, u2}) = 0 implies
that d(y) ≤ n − 3 and d(z) + d(u1) + d(u2) + 3d(y) ≤ 6n − 6. On the other hand, since
d(z) + d(u1) + 2d(y) ≥ 4n− 3 and d(y) + d(u2) ≥ 2n + 1, we have

6n− 2 ≤ d(z) + d(u1) + 3d(y) + d(u2) ≤ 6n− 6,

which is a contradiction.
(iii). First, notice that d(y) ≤ n− 4. By an argument similar to that in the proof of (ii),

we can show that

d(z, V (Cn−4)) + d(u1, V (Cn−4)) + d(u2, V (Cn−4)) + d(u3, V (Cn−4)) ≤ 4n− 16.

Then, since

d(z, {u1, u2, u3}) + d(u1, {z, u2, u3}) + d(u2, {u1, u2, z}) + d(u3, {u1, u2, z}) ≤ 20,

we have d(z)+d(u1)+d(u2)+d(u3) ≤ 4n+4. Besides, from condition (M) and d(y) ≤ n−4
it follows that

8n− 6 ≤ d(z) + 4d(y) + d(u1) + d(u2) + d(u3) ≤ 8n− 12,
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which is a contradiction. Lemma 5.5 is proved.

Lemma 5.6: Let C := x1x2 . . . xn−5x1 be a cycle of length n− 5 in D passing through y and
avoiding z. Let A = V (D) \ V (C)) = {z, u1, u2, u3, u4}. If d(y, {u1, u2}) = 0 and zu1u2z is
a cycle of length three, then D is Hamiltonian.

Proof. Suppose, on the contrary, that D is not Hamiltohian. By Theorem 4.2, D contains
no cycle passing through y and z. Then d(y) ≤ n−3. It is easy to see that for all i ∈ [1, n−5],

−→a [xi, z] +−→a [u2, xi+1] ≤ 1, −→a [xi, u1] +
−→a [z, xi+1] ≤ 1 and −→a [xi, u2] +

−→a [u1, xi+1] ≤ 1.

Therefore,

d(z, V (C))+d(u1, V (C))+d(u2, V (C)) =
n−5∑

i=1

(−→a [xi, z]+−→a [u2, xi+1]+
−→a [xi, u1]+

−→a [z, xi+1]

+−→a [xi, u2] +−→a [u1, xi+1]) ≤ 3n− 15.

Since d(z, A) ≤ 5 and d(u1, A)+ d(u2, A) ≤ 15, it follows that d(z)+ d(u1)+ d(u2) ≤ 3n+ 5.
This together with d(y) ≤ n− 3, d(y) + d(u2) ≥ 2n + 1 and condition (M) implies that

6n− 2 ≤ d(z) + 3d(y) + d(u1) + d(u2) ≤ 6n− 4,

which is a contradiction. This proves Lemma 5.6.

Lemma 5.7: Suppose that C := x1x2 . . . xn−2x1 is a cycle of length n − 2 in D passing
through y and avoiding z. Let V (D) \ V (C)) = {z, u}. If u ↔ z, then D is Hamiltonian.

Proof. Suppose, on the contrary, that z ↔ x but D is not Hamiltonian. Then, by Lemma
4.5, the vertices y and x are not adjacent. Hence, d(y) ≤ n− 2. Since D is not Hamiltonian,
it follows that for every i ∈ [1, n − 2] we have −→a [xi, z] + −→a [x, xi+1] ≤ 1 and −→a [xi, x] +−→a [z0, xi+1] ≤ 1. These imply that d(z) + d(x) ≤ 2n. Therefore, by condition (M), we have

4n− 3 ≤ d(z) + d(x) + 2d(y) ≤ 4n− 4,

which is a contradiction. Lemma 5.7 is proved.

6. Conclusion

In the current article, we have examined the Manoussakis conjecture for a digraph to be
Hamiltonian. For a digraph with the conditions of the Manoussakis conjecture, a number of
theorems and lemmas are proved. Found results may be the first step towards confirming
the Manoussakis conjecture.

Added in proof. Recently, using some results of this paper, the author confirmed the
Manoussakis conjecture.
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ÎáÕÙÝáñáßí³Í ·ñ³ýÇ Ñ³ÙÇÉïáÝÛ³ÝáõÃÛ³Ý í»ñ³µ»ñÛ³É

Ø³Ýááõë³ÏÇëÇ í³ñÏ³ÍÇ Ù³ëÇÝ

ê³Ùí»É Ê. ¸³ñµÇÝÛ³Ý

ÐÐ ¶²² ÆÝýáñÙ³ïÇÏ³ÛÇ ¨ ³íïáÙ³ï³óÙ³Ý åñáµÉ»ÙÝ»ñÇ ÇÝëïÇïáõï

e-mail: samdarbin@ipia.sci.am

²Ù÷á÷áõÙ

Ø³Ýááõë³ÏÇëÁ (J. of Graph Theory, vol. 16, pp. 51-59, 1992) ³é³ç³ñÏ»É ¿ Ñ»ï¨Û³É
í³ñÏ³ÍÁ:

ì³ñÏ³Í: ¸Çóáõù D-Ý 2-áõÅ»Õ Ï³å³Ïóí³Í n-·³·³Ã³ÝÇ ÏáÕÙÝáñáßí³Í ·ñ³ý ¿:
ºÃ» D-Ç ó³ÝÏ³ó³Í áã ÏÇó ·³·³ÃÝ»ñÇ ó³ÝÏ³ó³Í »ñÏáõ ï³ñµ»ñ fx; yg ¨ fu; vg ½áõÛ·»ñÇ
Ñ³Ù³ñ ï»ÕÇ áõÝÇ Ñ»ï¨Û³É d( x ) +d ( y ) +d ( w ) +d( z ) ¸ 4 n¡ 3 ³ÝÑ³í³ë³ñáõÃÛáõÝÁ, ³å³
D-Ý Ñ³Ý¹Çë³ÝáõÙ ¿ Ñ³ÙÇÉïáÝÛ³Ý:

Ü»ñÏ³ ³ßË³ï³ÝùáõÙ ³å³óáõóí»É ¿, áñ »Ã» D ÏáÕÙÝáñáßí³Í ·ñ³ýÁ µ³í³ñ³ñáõÙ
¿ Ø³Ýááõë³ÏÇëÇ í³ñÏ³ÍÇ å³ÛÙ³ÝÝ»ñÇÝ, ³å³

(1). D ·ñ³ýÁ å³ñáõÝ³ÏáõÙ ¿ óÇÏÉ-ý³Ïïáñ;
(2). ºÃ» D-Ç áã ÏÇó ·³·³ÃÝ»ñÇ áñ¨¿ fx; yg ½áõÛ·Ç Ñ³Ù³ñ d( x ) + d( y ) · 2 n ¡ 2 ,

³å³ (i) D-Ý Ñ³ÙÇÉïáÝÛ³Ý ¿ ³ÛÝ ¨ ÙÇ³ÛÝ ³ÛÝ Å³Ù³Ý³Ï, »ñµ D-Ý å³ñáõÝ³ÏáõÙ x ¨ y
·³·³ÃÝ»ñáí ³ÝóÝáÕ ÏáÕÙÝáñáßí³Í óÇÏÉ; (ii) D-Ý Ñ³ÙÇÉïáÝÛ³Ý ¿ Ï³Ù å³ñáõÝ³ÏáõÙ ¿
x ( y ) ·³·³Ãáí ³ÝóÝáÕ n ¡ 1 »ñÏ³ñáõÃÛ³Ý ÏáÕÙÝáñáßí³Í óÇÏÉ, áñÁ ãÇ ³ÝóÝáõÙ y ( x )
·³·³Ãáí (Ù³ëÝ³íáñ³å»ë, D-Ý å³ñáõÝ³ÏáõÙ ¿ ³éÝí³½Ý n ¡ 1 »ñÏ³ñáõÃÛ³Ý óÇÏÉ) ;

(3). ºÃ» D-Ç áã ÏÇó ·³·³ÃÝ»ñÇ áñ¨¿ fx; yg ½áõÛ·Ç Ñ³Ù³ñ d ( x) + d( y ) · 2 n¡ 4 , ³å³
ó³ÝÏ³ó³Í k, 2 · k · n ¡ 1 , ³ÝµáÕç ÃíÇ Ñ³Ù³ñ D-Ý å³ñáõÝ³ÏáõÙ ¿ k »ñÏ³ñáõÃÛ³Ý
ÏáÕÙÝáñáßí³Í óÇÏÉ;

(4). D ·ñ³ýÇ áñáß³ÏÇ »ñÏ³ñáõÃÛáõÝÝ»ñ ( n¡ 5 ) -Çó ÙÇÝã¨ ( n¡ 1 ) áõÝ»óáÕ ÏáÕÙÝáñáßí³Í

ÏáÕÙÝáñáßí³Í ·ñ³ý:

Î ãèïîòåçå Ìàíîóññàêèñà î ãàìèëüòîíîâîñòè îðãðàôîâ

Ñàìâåë Õ. Äàðáèíÿí

Èíñòèòóò ïðîáëåì èíôîðìàòèêè è àâòîìàòèçàöèè ÍÀÍ ÐÀ
e-mail: samdarbin@ipia.sci.am

Àííîòàöèÿ

Ìàíîóññàêèñ (J. of Graph Theory, vol. 16, pp. 51-59, 1992) ïðåäëîæèë
ñëåäóþùóþ ãèïîòåçó.

Ãèïîòåçà: Ïóñòü D ÿâëÿåòñÿ 2-ñèëüíî ñâÿçíûì n-âåðøèííûì îðãðàôîì, â
êîòîðîì äëÿ ëþáûõ ðàçëè÷íûõ ïàð fx; yg, fu; vg íåñìåæíûõ âåðøèí èìååò ìåñòî

 

óÇÏÉ»ñÇ Ñ³Ù³ñ ³å³óáõóí»É »Ý ÙÇ ß³ñù åÝ¹áõÙÝ»ñ:
´³Ý³ÉÇ µ³é»ñ՝    ÏáÕÙÝáñáßí³Í ·ñ³ý, Ñ³ÙÇÉïáÝÛ³Ý óÇÏÉ, ý³Ïïáñ óÇÏÉ, Ñ³ÙóÇÏÉÇÏ
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d( x ) + d( y ) + d( w ) + d ( z ) ¸ 4 n ¡ 3 . Òîãäà D ÿâëÿåòñÿ ãàìèëüòîíîâûì.
Â íàñòîÿùåé ðàáîòå äîêàçàíî, ÷òî åñëè îðãðàô D óäîâëåòâîðÿåò óñëîâèÿì

ãèïîòåçà Ìàíîóññàêèñà, òî
(1). D ñîäåðæèò öèêë-ôàêòîð;
(2). Åñëè äëÿ íåêîòîðîé ïàðû íåñìåæíûõ âåðøèí x è y èìååò ìåñòî d( x ) +

d( y ) · 2 n ¡ 2 , òî èìåþò ìåñòî: (i) D ÿâëÿåòñÿ ãàìèëüòîíîâûì òîãäà è òîëüêî
òîãäà, êîãäà D ñîäåðæèò êîíòóð ïðîõîäÿùèé ÷åðåç âåðøèí x è y, (ii) D ÿâëÿåòñÿ
ãàìèëüòîíîâûì èëè ñîäåðæèò êîíòóð äëèíû n ¡ 1 , êîòîðûé ïðîõîäèò ÷åðåç
âåðøèíó x ( y ) (â ÷àñòíîñòè, D ñîäåðæèò êîíòóð äëèíû ïî êðàéíåé ìåðå n ¡ 1 );

(3). Åñëè äëÿ íåêîòîðîé ïàðû íåñìåæíûõ âåðøèí x è y èìååò ìåñòî d( x ) +
d( y ) · 2 n ¡ 4 , òî D ñîäåðæèò êîíòóð ëþáîé äëèíû k, 3 · k · n ¡ 1 ;

(4). Äîêàçàíû ðÿä ñâîéñòâ äëÿ êîíòóðîâ äëèíû îò n ¡ 5 äî n ¡ 1 .
Êëþ÷åâûå ñëîâà: îðãðàô, ãàìèëüòîíîâûé öèêë, ôàêòîð öèêë, ïàíöèêëè÷åñêèé

îðãðàô.
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