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Abstract

The queue state in multiprocessor computing systems is an actual problem for the
process of optimal scheduling of tasks. In this paper, a system of equations is obtained
describing the distribution of the queue for the system in a steady state. The resulting
linear system of equations is solved using conventional numerical methods and can be
used in schedulers.
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1. Introduction

In classical queueing theory it is usually assumed that tasks that cannot get service imme-
diately after arrival either join the queue (and then are served according to some queueing
discipline) or leave the system forever. Sometimes tasks arriving for execution may be ”im-
patient”, that is, they leave the queue after a certain waiting time [1,2].

This paper addresses the problem of obtaining the state distribution of the system
M |M |m|n for the exponential distribution of the arrival, execution, and service failure tasks
when each task has a waiting time restriction.

2. System Description

Suppose that a task stream enters a computing system consisting of m processors (m ≥ 1).
Each task is characterized by three random parameters (ν, β, ω), where ν is the number of
computational resources(processors, cores, cluster nodes, etc.,) required to perform the task,
β is the maximum time required to complete the task and ω is the possible time that the
task can wait before assigning to run, after which it leaves the system without service [3].

The system parameters are described:
m - the maximum number of computational resources;
n - the maximum permissible number of tasks in the queue;
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α - a random value of the time interval between neighboring entrances, which has the prob-
ability distribution:

P (α < t) = 1− e−at,

where a is the intensity of the incoming stream;
β - a random value of the task execution time, which has the probability distribution:

P (β < t) = 1− e−bt,

where b is the intensity of service;
ω - a random value of the permissible waiting time for a task in the queue, which has the
probability distribution:

P (ω < t) = 1− e−wt,

where w is the intensity of the failure of service for a task from the queue;
ν - a random value of the number of required computational resources for performing a task,
which has the probability distribution:

P (ν ≤ k) =
k

m
, k = 1, 2, ...,m.

Tasks will be accepted for service in the order of their entry into the system, i.e., FIFO
discipline is used (First-In-First-Out). Those tasks that arrive at the time of full occupation
of the queue (there are already n tasks in the queue) receive a denial of service.

3. Basic Notations and Equations

Due to the finite number of possible states of the system, the system goes into a steady mode
of operation, i.e., in a steady state. To analyze our system we need to identify the following
basic notation:
Li,j - the state of the system when i tasks are serviced and j tasks are waiting in the queue,
Pi,j - the probability that the system is in the Li,j state:

Pi,j = P (Li,j).

Due to finite numbers n and m, the number of possible states of the system is finite. Cases
when the system can pass Li,j state from the other state are presented in the following
scheme:
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1. the state of the system was Li,j−1 and one task arrived and joined the queue;

2. the state of the system was Li−k+1,j+k, where k = 1, 2, ...,min(i, n − j) and one task
completed the service and left the system, the first k tasks from the queue were accepted
to service;

3. the state of the system was Li−k,j+k+1, where k = 0, 1, ...,min(i − 1, n − j − 1) and
the first task of the queue left the queue(its waiting time ran out) and the first k tasks
from the queue were accepted to service;

4. the state of the system was Li,j+1 and one task from the queue, not the first task, left
the queue(one’s waiting time ran out).

Obviously, the probability that the state of the system will be Li,j is the sum of the
probabilities of the above cases, it follows that:

Pi,j = δ1(i, j)Pi,j−1 + θj

l1∑
k=0

ξi,kδ2(i, j, k)Pi−k+1,j+k +

(1)

+ ηj

l2∑
k=0

δ3(i, j, k)Pi−k,j+k+1 + ηjδ4(i, j)Pi,j+1,

where 0 ≤ i ≤ m, 0 ≤ j ≤ n,
l1 = min(i, n− j),

l2 = min(i− 1, n− j − 1),

ηj = { 0 , for j = n1, for 0 ≤ j < n,

θj = { 0 , for j = 01, for 0 < j ≤ n,

ξi,k = { 0 , for i = m and k = 01, for otherwise,

and δ1(i, j), δ2(i, j, k), δ3(i, j, k), δ4(i, j) are probabilities for appropriate cases:

δ1(i, j) =
a

a+ ib+ jw
,

δ2(i, j, k) =
(i− k + 1)b

a+ (i− k + 1)b+ (i+ k)w
P (i, j, k),

where k = 0, 1, ..., l1 and if i = 0 and 0 < j ≤ n, then P (i, , j, k) = 0 and if i = 0 and j = 0,
then P (i, , j, k) = 1 but for otherwise P (i, j, k) is the following conditional probability:

P (i, j, k) = P

(
i−k∑
s=1

νs +
i+1∑

s=i−k+2

νs ≤ m <
i−k∑
s=1

νs +
i+2∑

s=i−k+2

νs

/
i−k+1∑
s=1

νs ≤ m <
i−k+2∑
s=1

νs

)
,

here it is assumed that νi−k+1 is the number of required computational resources required
to service the task that has left the system(it was serviced),

δ3(i, j, k) =
w

a+ (i− k)b+ (i+ k + 1)w
P (i, j, k),
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where k = 0, 1, ..., l2 and P (i, j, k) = 0 if i = 0, but if 0 < i ≤ m, then P (i, j, k) is the
following conditional probability:

P (i, j, k) = P

(
i−k∑
s=1

νs +
i+1∑

s=i−k+2

νs ≤ m <
i−k∑
s=1

νs +
i+2∑

s=i−k+2

νs

/
i−k∑
s=1

νs ≤ m <
i−k+1∑
s=1

νs

)
,

here it is assumed that νi−k+1 is the number of required computational resources required
to service the task that has left the queue(its waiting time ran out),

δ4(i, j) =
w

a+ ib+ (j + 1)w
.

Calculation formulas for P (i, j, k), P (i, j, k) and some other useful probabilities will be pre-
sented in the next section of this article.
Note if i = 0 for all 0 < j ≤ n

P0,j(t) = 0, (2)

and
m∑
i=0

n∑
j=0

Pi,j(t) = 1. (3)

4. Formulas for Some Useful Probabilities

This section presents the calculation of the values of some probabilistic characteristics. We
will use two lemmas proved in the previous article [4].
By P (i, k) is denoted the probability that k processors will be occupied by i tasks:

P (i, k) = P

 i∑
j=1

νj = k

 .
Lemma 1: The probability that k processors will be occupied by i tasks, can be obtained in
the following way:

P (i, k) =
1

mi

(
k − 1

i− 1

)
, 1 ≤ i ≤ k ≤ m.

Lemma 2: The probability that i tasks will occupy no more than k processors, can be ob-
tained in the following way:

P

 i∑
j=1

νj ≤ k

 =
1

mi

(
k

i

)
, 1 ≤ i ≤ k ≤ m.

Lemma 3:

P

(
k∑

i=1

νi ≤ s <
k+1∑
i=1

νi

)
=

1

mk+1

(
m− s− k

k + 1

)(
s

k

)
,

where 1 ≤ k ≤ s ≤ m.
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To calculate P (i, j, k) probability, we first perform a simple transformation, then use the
conditional probability formula:

P (i, j, k) = P

(
i+1∑
s=1

νs ≤ m+ νi−k+1 <
i+2∑
s=1

νs

/
i−k+1∑
s=1

νs ≤ m <
i−k+2∑
s=1

νs

)

=

P

(
i+1∑
s=1

νs ≤ m+ νi−k+1 <
i+2∑
s=1

νs,
i−k+1∑
s=1

νs ≤ m <
i−k+2∑
s=1

νs

)

P

(
i−k+1∑
s=1

νs ≤ m <
i−k+2∑
s=1

νs

) .

By using Lemma 3 we can calculate the probability, which is in the denominator of the last
fraction:

P

(
i−k+1∑
s=1

νs ≤ m <
i−k+2∑
s=1

νs

)
=
i− k + 1

mi−k+2

(
m+ 1

i− k + 2

)
.

Before the calculation of the probability, which is in the numerator of the fraction, it is
denoted by Qk, then it is calculated in the following way:

Qk =
m−k∑
u=i−k

P

(
i−k∑
s=1

νs = u

)
qu,

where k = 1, 2, ...,min(i, n− j) and

qu = P

(
i+1∑

s=i−k+2

νs ≤ m− u <
i+2∑

s=i−k+2

νs, νi−k+1 ≤ m− u < νi−k+1 + νi−k+2

)
. (4)

Obviously, in the last probability we deal with independent probabilities and with the help
of Lemma 3 for qu we get the following formula:

qu =
(m− u)(m+ u+ 1)((m+ 1)k + u)

2(k + 1)mk+3

(
m− u
k

)
.

By using Lemma 1 as a result we get the following formula for Qk:

Qk =
1

mi−k

m−k+1∑
u=i−k

(
u− 1

i− k − 1

)
qu,

where qu is calculated by the formula (4). So, we get a formula for P (i, j, k) probability:

P (i, j, k) =
mi−k+2

(i− k + 1)
(

m+1
i−k+2

)Qk.

Note that we can calculate the probability P (i, j, k) in the same way as P (i, j, k) and we get

a formula for P (i, j, k) probability:

P (i, j, k) =

∑m−k
u=i−k u((m+ 1)k + u)

(
u−1
i−k

)(
m−u
k

)
(k + 1)(i− k)mk+1

(
m+1
i−k+1

) .
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5 . Co n c lu s io n

In t h is p a p e r , we p r e s e n t e d a m u lt ip r o c e s s o r qu e u e in g s ys t e m M jM jmjn wit h wa it in g t im e
r e s t r ic t io n s o f t a s ks . Co n s id e r in g t h e s t a t e o f t h e s ys t e m a t s t e a d y m o d e , e qu a t io n s we r e
o b t a in e d : ( 1 ) , ( 2 ) a n d ( 3 ) fo r m u la s t o g e t h e r , wh ic h g ive p r o b a b ilis t ic r e la t io n s b e t we e n t h e
s t a t e s o f t h e s ys t e m . Th e r e s u lt in g s ys t e m o f e qu a t io n s a llo ws u s t o c a lc u la t e t h e p r o b a b il-
it ie s o f b e in g in e a c h s t a t e o f t h e s ys t e m , wh ic h , in t u r n , will a llo w u s t o ¯ n d t h e vir t u a l
wa it in g t im e fo r a t a s k. S u c h a m o d e l o f a qu e u in g s ys t e m c a n p la y a n im p o r t a n t r o le
in m u lt ip r o c e s s o r s ys t e m s , a n d t h e r e s u lt s o b t a in e d c a n b e a p p lie d t o t h e d e ve lo p m e n t o f
va r io u s s c h e d u lin g a lg o r it h m s a n d s c h e d u le r s .
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