
Mathematical Problems of Computer Science 54, 41–52, 2020.

UDC 004.65, 004.8

Cardinality Estimation of an SQL Query Using

Recursive Neural Networks

Davit S. Karamyan

Information Systems
Yerevan State University, Armenia

e-mail: dkaramyan@krisp.ai

Abstract

To learn complex interactions between predicates and accurately estimate the cardi-
nality of an SQL query, we develop a novel framework based on recursive tree-structured
neural networks, which take into account the natural properties of logical expressions:
compositionality and n-ary associativity. The proposed architecture is an extension
of MSCN (multi-set convolutional network) for queries containing both conjunction
and disjunction operators. The goal is to represent an arbitrary logical expression in a
continuous vector space by combining sub-expression vectors according to the operator
type. We compared the proposed approach with the histogram-based approach on the
real-world dataset and showed that our approach significantly outperforms histograms
with a large margin.

Keywords: Recursive neural networks, Representation learning, Cardinality esti-
mation, Compositionality, Complex logical expressions.

1. Introduction

Cardinality estimation is a key unit in query optimization. To choose the best execution plan,
the query optimizer should precisely estimate the cardinality of an SQL query the number of
rows in the table selected by the query without actual execution. Existing query optimizers
in today’s database management systems still select poor execution strategies. Their main
drawback is that query optimizers make simplifying assumptions (e.g., column independence)
about the underlying distribution of the relational table. These simplifying assumptions are
helping to factorize the joint distribution into some low-dimensional representation using
per column statistics, which are cheap to construct and store. When these assumptions do
not hold, cardinality estimation errors occur, and the problem gets more complicated as the
number of columns grows, leading to sub-optimal plan selections.

Recently, a number of machine and deep learning techniques have been successfully ap-
plied in many RDBMS (Relational Database Management System) applications, including

41

42 Cardinality Estimation of an SQL Query Using Recursive Neural Networks

query optimization [1] - [6], indexing [7]. Attempts are being made to replace programmed
heuristics with learned models. The advantage of these methods concluded in their ability
to learn latent patterns of the dataset that are hard to find using rule-based heuristics.

This work was originally inspired by the recent work done by Kipf et al., 2018 [1]. The
authors have developed a new deep learning approach (a multi-set convolutional network) to
cardinality estimation. They show that deep learning models can learn complex interactions
between predicates and even can capture join-crossing correlations.

Nevertheless, there remain challenging problems with complex queries, which can contain
an arbitrary number of predicates connected by one of the Boolean operators (conjunction or
disjunction). We use a recursive neural model [8] to approach this challenge by representing
a logical expression with a dense vector which can be considered as a non-linear composition
of sub-expression vectors.

Another challenge is related to the evaluation metric: mean q-error [9], which is the ratio
between an estimate and the true cardinality. The relative factor can be the same for big
and small cardinalities. For example, if the true and predicted cardinalities are equal to 10
and 5, the q-error will be 2. The same q-error will be obtained if the true and predicted
cardinalities are equal to 10000 and 5000. It will be better to distinguish between mistakes
made on big cardinalities mistakes made on small cardinalities. That is why we introduce two
novel evaluation metrics for cardinality estimation: mean absolute interval error (MAIR)
and interval accuracy (IA), which take into account not only the relative factor but also the
absolute difference.

The major contributions of our work are as the followings: 1

• We present a novel deep learning framework for cardinality estimation, which can
handle complex queries.

• We introduce new evaluation metrics as well as a new objective function for cardinality
estimation to distinguish between big and small mistakes.

• We compare the proposed model with a histogram-based approach and show the su-
periority of the proposed model.

2. Related Work

Ivanov et al. [10] used query execution statistics of the previously executed queries to train
famous machine learning models (e.g., KNN). Despite the simplicity, their approach does
not take into account the semantic similarity between clauses, i.e., predicates are atomic
objects.

Kipf et al. introduced [1] the multi-set convolutional network for cardinality estimation.
They used set convolution to represent a set of tables, a set of joins and a set of predicates
with fixed-length vectors, which are then fed as input to a regression module. They have

1https://github.com/naymaraq/SQL-Cardinality-Estimation.git

The rest of this paper is organized as follows: A literature review on cardinality estimation
is presented in Section 2. This is followed by the introduction of the proposed model and
its essential aspects. Experimental evaluations and training details are presented in Section
4. This is followed by discussion and conclusions.

D. Karamyan 43

shown that it can learn (join-crossing) correlations pretty well. However, there are still
open questions on dealing with complex predicates, which may include both conjunction
and disjunction.

Another supervised method was proposed by Wang et al. [11], where an attempt was
made to build a consistent and interpretable cardinality estimator by introducing a mono-
tonic regression model w.r.t the query threshold.

To capture the multivariate distributions of relational tables, Yang et al. [6] proposed an
unsupervised approach based on the deep autoregressive model combined with Monte Carlo
sampling. The model approximates conditional densities, which are then used to evaluate
the joint distribution.

In [12], the authors focused on more general queries, which may include DISTINCT,
AND, OR, and NOT operators. They described a recursive algorithm to extend any cardi-
nality estimation method that only handles conjunctive queries to one that works for more
general queries, without changing the method itself. However, the proposed method has
exponential complexity and it is tractable for queries, which have relatively small number of
predicates.

Marcus et al. [13] presented flexible operator embeddings, to automatically map query
operators to useful features tailored to a particular database which can be combined with
machine learning models.

3. Proposed Approach

In this chapter, we will describe the key aspects of the proposed approach and explain how
to use natural properties of logical expressions (compositionality and n-ary associativity)
and inject these inductive properties into deep learning architecture, which will allow them
to learn composable, permutations invariant functions. We will introduce the parsing al-
gorithm (Permutation Invariant Parse Tree) to achieve compositionality as well as chosen
deep learning architecture. Also, we briefly remind how to represent queries with multi-hot
vectors as it was done in previous works [1, 5, 12].

3.1. Query Representation

From now on, we focus only on SQL queries, which have the following form:

select count(*)
from table
where logical expression

where logical expression consists of an arbitrary number of predicates, which may be con-
nected with one of the Boolean operators (&&, ||) and may be grouped using parentheses.
Predicates are tuples with the form (c, op, v), where c corresponds to column name, op can
be any comparison operator: op ∈ {<,≤,=, 6=,≥, >}, v is taken from the column domain.

Like the related works, we also represent queries with multi-hot vectors, according to
which every predicate of the form (c, op, v) is encoded with multiple one-hot vectors one for
each part of the predicate. More formally, the feature vector of predicate p is a concatenation
of one-hot vectors of its parts: xp = [xc, xop, xv]. Here we assume that xv is a one-hot vector,
but in general, it could also be a numeric value. These vectors are used as leaf nodes and
serve as inputs for TreeRNN (see Section 3.3.).

44 Cardinality Estimation of an SQL Query Using Recursive Neural Networks

In addition, we will restrict our attention to single-table queries, i.e., in from field, there
is always one table. That is why we do not need to encode tables and join attributes. It is
worth noting that the proposed architecture can be easily extended for queries containing
joins and multiple-relations, as was done in [1].

(a) Expression tree. (b) Permutation invariant parse tree.

Fig. 1. Expression and permutation invariant trees for (x1&&x2)&&(x3&&x4).

3.2. Parsing

In this section, we would like to study the structure of functions operating on logical expres-
sions. These functions take any valid logical expression as an input, and the output response
range is a continuous space R, as in the case of regression. A function f acting on logical
expressions needs to be invariant with respect to a permissible permutation of predicates. In
other words, the permutation invariability of function f can be defined recursively as follows:
if x and y are sub-expressions, then

• f(x||y) = f(y||x)

• f(x&&y) = f(y&&x)

Thus, to construct the proper structure of function f , we extend the traditional expression
tree2 to an alternative and equivalent one: Permutation Invariant Parse Tree, where every
node might have an arbitrary number of children. For example, a permutation invariant
parse tree for (x1&&x2)&&(x3&&x4) will look like just as the example shown in Fig. 1b.
All the children of the internal node form a set, and the permutation of this set should not
lead to any changes in the final output.

The algorithm of construction of such a tree is pretty straightforward: in the first step,
the expression tree is being constructed from a prefix/postfix form of the logical expression.
In the second step, we traverse from leaves to root by merging two internal nodes if they
both have the same operator.

2An expression tree is a binary tree, in which each internal node corresponds to the operator. Each leaf
node corresponds to an operand.

D. Karamyan 45

Fig. 2. The architecture of the model: During the forward propagation, the corresponding
subnetwork adjusted to each internal node according to the operator (&&, ||).

The activation of the root node acts as an input for the regression module.

3.3. Model Architecture

Due to the compositional nature of logical expression, we choose a tree-structured recursive
neural network (TreeRNN) model [8], which has been successful in a number of NLP tasks,
including sentiment analysis [14, 15], paraphrase detection [16], natural language inference
[17], etc. Their success highly depends on their ability to capture semantic compositionality.
In NLP, compositionality is the ability to express sentences of arbitrary length by combining
phrases and words. Besides their ability to express compositionality with fixed-length repre-
sentations, tree-structured models have justified themselves to learn logical deduction from
reasonably-sized training sets. It is shown that these models can learn to identify logical
relationships such as entailment and contradiction[18]. Also, TreeRNN models have been
used to find the equivalence of arbitrary symbolic and boolean expressions by forcing the
model to cluster its output to one location per equivalence class[19].

Given a tree described in Section 3.2., let C(j) denote the set of children of node j and
N(j) denote the number of children of node j. The following equations describe the forward
propagation of the model:

h̃j =
1

N(j)

∑
k∈C(j)

φ(hk),

φ(hk) =

{
φ&&(hk), if type(j) = &&

φ||(hk), if type(j) = ||
,

s = R(h̃root). (1)

46 Cardinality Estimation of an SQL Query Using Recursive Neural Networks

where in (1), h̃root is a vector representation of root node, R is a shallow neural network that
estimates the final cardinality score.

In Fig. 2, we illustrate the architecture of the proposed TreeNN model on a particular
input query: (x1||x2||x3)&&x4&&(x5||x6). During the forward propagation, the model uses
a different type of subnetwork according to the operator (φ&& or φ||). These two types
of subnetworks are just shallow multilayer perceptrons (MLP) with the linear activation
functions for the hidden layers and the hyperbolic tangent activation functions for the output
layer. The outputs from MLP are averaged by mean pooling layer, making the activations of
each tree node invariant to the corresponding child nodes permutations. The motivation of
choosing mean pooling comes from Deep Sets [20], where Zaheer et al. introduce a network
architecture, which can operate on sets. In particular, they prove a theorem, which claims
that any function f(X) operating on a set X is a valid set function, i.e., invariant to the
permutation of instances in X, if it can be decomposed in the form ρ(

∑
x∈X φ(x)), for suitable

transformations φ and ρ. Finally, the activations of the root node (h̃root) act as an input for
another multilayer perceptron (R), which is responsible for cardinality estimation.

4. Experiments

4.1. Data Collection

First, we generate random queries based on the database schema and the values in it. Next,
the true cardinalities are obtained by executing queries on the whole database. As we have
mentioned before, we only examine single-table queries, i.e., a training sample consists of a
logical expression defined in where field and the true cardinality. An example of a logical
expression is shown in Fig. 3.

To generate predicates, we uniformly select a column from the database schema, then
select the corresponding operation from {<,≤,=, 6=,≥, >} and, finally, select a value from
the column values.

We perform parallel query execution in Hadoop infrastructure, which gives us the fastest
way to collect the training data.

Fig. 3. An example of generated logical expression.

4.2. Evaluation Metrics

The traditional evaluation metric for cardinality estimation is the mean q-error [20], which
shows how many times the predicted and the true cardinalities differ from each other. The
drawback of q-error is that it scores big and small cardinalities in the same way. For instance,
if the true and predicted cardinalities are equal to 10 and 5, respectively, the q-error will be

D. Karamyan 47

2. We will get the same q-error if the true and predicted cardinalities are equal to 10000
and 5000. Hence, it would be preferable to score these cases by considering also the absolute
difference. That is why we introduce two novel metrics for cardinality estimation: Mean
Absolute Interval Error (MAIR) and Interval Accuracy (IA). To define these metrics, we
first split the output range into K consecutive intervals. Let G(x) denote the index of the
interval, which contains x. Based on these intervals, MAIR and IA are calculated as follows:

MAIR =
1

N

∑
q

|G(y)−G(ŷ)|,

IA =

∑
q 1G(y)=G(ŷ)

N
,

where N is the number of samples, y and ŷ are the true and predicted cardinalities. The
higher the value of K, i.e., the smaller the intervals, the more reliable these metrics are.

Besides, we also report other evaluation metrics such as RMSE (root mean squared error),
MAE (mean absolute error), MQE (mean q-error).

4.3. Training Details

4.3.1. Training Data

The training was conducted on 100K generated queries, from which 10K queries were used
as a development set, and another 10K were used as a final evaluation (test) set. We also
removed 0-cardinality examples from the development and test sets to have a fair evaluation.
The log-normalization was used to normalize the outputs.

As each query has its unique parse tree, we cannot easily organize mini-batch training.
So, in all our experiments, the training was conducted with a mini-batch size equal to 1,
which leads to slow training.

4.3.2. Hyperparameter Search

Hyperparameter search was performed on the development set to choose the dimensionality
of node vectors hj and the dimensionality of layers in regression network R. Because of slow
training, hyperparameter search was performed on the first 20 epochs using early stopping.
The best result was achieved for dhj

= 32 and dlR = 80.

4.3.3. Loss Function and Optimization

To overcome the drawback mentioned in Section 4.2., we construct the loss function, which
consists of two parts: the relative factor and the squared difference. The first part is respon-
sible for optimizing the relative difference, i.e., the q-error, and the second part is responsible
for differentiating big and small mistakes.

Lq(y, ŷ) =
α

2
(
y

ŷ
+
ŷ

y
) + (1− α)(y − ŷ)2,

L =
1

N

∑
q

Lq(y, ŷ). (2)

48 Cardinality Estimation of an SQL Query Using Recursive Neural Networks

(a) Convergence of loss function with (b) MAIR and IA changes with

the number of epochs. the number of epochs.

Fig. 4. Model performance with the number of epochs.

The final training objective is to minimize the loss function written in (2). The loss is
a convex combination of relative and squared difference terms. We set α equal to 0.99 to
concentrate the central part of the loss on the relative part, plus an additional penalization
score when huge mistakes were made.

We used Adam optimizer [21] with β1 = 0.9, β2 = 0.99 and ε = 10−8. We set the learning
rate equal to 10−4. The parameters, which achieve the smallest absolute interval error on
the development set will be chosen for final evaluation.

Fig. 4a shows how the training and validation losses have decreased over epochs. It
takes 30-35 epochs to converge. On the other hand, Fig. 4b shows how MAIR and IA have
changed over epochs. Both metrics are evaluated on the development set. It can be seen from
Fig. 4 that minimizing the loss function leads to the smaller mean absolute interval error
and the larger interval accuracy, which means that the TreeRNN is generalized successfully
on the development set.

4.4. Results

4.4.1. Histogram

The histogram approach makes a simplifying assumption about column independence. The
independence assumption is helping to factorize the joint distribution. In particular, one can
derive inference rules based on that assumption:

P (A ∧B) = P (A)P (B),

P (¬A) = 1− P (A),

P (A ∨B) = 1− (1− P (A))(1− P (B)),

where A and B are predicates, P is the probability of a single predicate.

D. Karamyan 49

4.4.2. Quantitative Analysis

The performance of the proposed permutation invariant TreeRNN is compared with the
baseline model. The appropriate performance metrics are given in Table 1. To calculate
MAIR and IA, we divide the output range into 15 intervals: 0 < 50 < 500 < 1000 <
2500 < 5000 < ... < 250000 < 400000 < 600000. The expression is considered short if it
is a combination of at most five predicates. The expression is considered middle if it is a
combination of at least six but not more than 12 predicates. And, finally, the expression is
considered long if it is a combination of at least 13 predicates.

One can see from Table 1 that the proposed model is superior to the baseline model
with a clear margin. Due to their simple architecture, histograms are fast and accurate
when dealing with short expressions. Long expressions are better learned with the TreeRNN
model, as it takes into account the natural properties of logical expressions and can learn
more complex interactions between predicates.

Table 1: Comparison of Histogram against the proposed TreeRNN. The integer in parenthe-
ses indicates the number of evaluated samples corresponding to each type.

Query Type
TreeRNN Histogram

MQE MAIR IA MAE RMSE MQE MAIR IA MAE RMSE

Short (313) 1.616 0.294 0.719 7811 14927 1.36 0.3 0.715 6077 11294

Middle (1353) 1.718 0.363 0.66 3661 9400 2.685 0.5 0.59 4846 13121

Long (4093) 1.768 0.2 0.81 594 2652 3.833 0.393 0.649 1006 4625

Overall (5759) 1.747 0.243 0.77 1707 6154 3.43 0.413 0.64 2184 7911

4.4.3. Monotonic Test

The ideal cardinality estimation system must be not only accurate but also consistent and
interpretable. To explain it, let us look at the example: if query A is a subset of B, then the
cardinality estimator should give more scores to B rather than A.

We make a simple experiment to understand the behaviour of the proposed model. We
randomly remove one or two predicates from logical expressions in the test set and see how
the output changes. If removed predicates are connected to others with && (||) operator,
the output must be increased (decreased). We report the accuracy of successful outcomes.

Table 2 shows the results. Although we did not even demand that TreeRNN must be
monotonous, it performs very well, especially for removed predicates, which are connected
to others with && operator. Histograms, on the other side, are designed to be monotonous.

50 Cardinality Estimation of an SQL Query Using Recursive Neural Networks

Table 2: Monotonic test result.

#Removed
TreeRNN Histogram

&& || && ||
1 92% 67% 100% 100%

2 94% 78% 100% 100%

5. Conclusion

We have presented a novel cardinality estimation system using recursive tree-structured
neural networks. The proposed TreeRNN model is capable of taking complex tree-structured
data and is able to learn underlying patterns of relational tables. Experimental evaluations
show that our method outperforms the well-known histogram method with a clear margin.
This is achieved by injecting inductive biases into the model architecture, which allows us
to learn composable and permutations invariant functions.

References

[1] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz and A. Kemper, Learned Cardinalities:
Estimating Correlated Joins with Deep Learning, arXiv preprint arXiv:1809.00677,
2018.

[2] S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein and I. Stoica, Learning to Optimize
Loin Queries with Deep Reinforcement Learning, arXiv preprint arXiv:1808.03196,
2018.

[3] R. Marcus and O. Papaemmanouil, “Deep reinforcement learning for join order enu-
meration”, In Proceedings of the First International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management, pp. 1-4, 2018.

[4] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi, “Learning state representations
for query optimization with deep reinforcement learning”, In Proceedings of the Second
Workshop on Data Management for End-To-End Machine Learning, pp. 1-4, 2018.

[5] J. Ortiz, M. Balazinska, J. Gehrke, and Sathiya S, An empirical analysis of deep
learning for cardinality estimation, arXiv preprint arXiv:1905.06425, 2019.

[6] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M. Hellerstein,
S. Krishnan, and I. Stoica, Deep unsupervised cardinality estimation, arXiv preprint
arXiv:1905.04278, 2019.

[7] T. Kraska, A. Beutel, E. H. Chi, J. Dean and N. Polyzotis, “The case for learned index
structures”, In Proceedings of the 2018 International Conference on Management of
Data, pp. 489-504, 2018.

[8] C. Goller and A. Kuchler, “Learning task-dependent distributed representations by
backpropagation through structure”, In Proceedings of International Conference on
Neural Networks (ICNN96), IEEE,vol. 1, pp. 347-352, 1996.

[9] G. Moerkotte, T. Neumann, and G. Steidl, “Preventing bad plans by bounding the
impact of cardinality estimation errors”,Proceed- ings of the VLDB Endowment, vol.
2, no. 1, pp. 982-993, 2009.

D. Karamyan 51

[10] O. Ivanov and S. Bartunov, Adaptive cardinality estimation, arXiv preprint
arXiv:1711.08330, 2017.

[11] Y.Wang, C.Xiao, J.Qin, X.Cao, Y.Sun, W.Wang, and M.Onizuka, “Monotonic cardi-
nality estimation of similarity selection: A deep learning approach”, In Proceedings
of the 2020 ACM SIGMOD International Conference on Management of Data, pp.
1197-1212, 2020.

[12] R. Hayek and O. Shmueli, Nn-based transformation of any sql cardinality estimator for
handling distinct, and, or and not, arXiv preprint arXiv:2004.07009, 2020.

[13] R.Marcusand O.Papaemmanouil, Flexible operator embeddings via deep learning, arXiv
preprint arXiv:1901.09090, 2019.

[14] O. Irsoy and C. Cardie, “Deep recursive neural networks for compositionality in lan-
guage”, In Advances in Neural Information Processing Systems, pp. 2096-2104, 2014.

[15] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng and C. D. Manning, “Semi-supervised
recursive autoencoders for predicting sentiment distributions, In Proceedings of the
2011 conference on empirical methods in natural language processing, pp. 151-161,
2011.

[16] R. Socher, E. H. Huang, J. Pennin, C. D. Manning and A. Y. Ng, “Dynamic pooling
and unfolding recursive autoencoders for paraphrase detection”, In Advances in Neural
Information Processing Systems, pp. 801-809, 2011.

[17] I. Dagan, O. Glickman and B. Magnini, “The pascal recognising textual entailment
challenge”, in Machine Learning Challenges Workshop, Springer, pp. 177-190, 2005.

[18] S. Bowman, C. Potts and C. D. Manning, “Recursive neural networks can learn logical
semantics”, In Proceedings of the 3rd workshop on continuous vector space models and
their compositionality, pp. 12-21, 2015.

[19] M. Allamanis, P. Chanthirasegaran, P. Kohli and C. Sutton, “Learning continuous se-
mantic representations of symbolic expressions”, In International Conference on Ma-
chine Learning, pp. 80-88, 2017.

[20] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov and A. J.
Smola, “Deep sets”, In Advances in Neural Information Processing Systems, pp. 3391-
3401, 2017.

[21] D.P.Kingma and J.Ba, Adam:A method for stochastic optimization, arXiv preprint
arXiv:1412.6980, 2014.

Submitted 10.06.2020, accepted 04.11.2020.

5 2 Cardinality Estimation of an SQL query using Recursive Neural Networks

Ð³ñóÙ³Ý Ñ½áñáõÃÛ³Ý Ùáï³ñÏáõÙÁ é»ÏáõñëÇí Ý»ÛñáÝ³ÛÇÝ
ó³Ýó»ñÇ ÙÇçáóáí

¸³íÇÃ ê. ø³ñ³ÙÛ³Ý

ºñ¨³ÝÇ å»ï³Ï³Ý Ñ³Ù³Éë³ñ³Ý

e-mail: davkar98@gmail.com

²Ù÷á÷áõÙ

äñ»¹ÇÏ³ïÝ»ñÇ ÙÇç¨ µ³ñ¹ Ï³å»ñÁ ëáíáñ»Éáõ ¨ ¾ë-øÛáõ-¾É Ñ³ñóáõÙÝ»ñÇ Ñ½áñáõÃÛáõÝÁ
×ß·ñÇï ·Ý³Ñ³ï»Éáõ Ñ³Ù³ñ ³é³ç³ñÏíáõÙ ¿ Ýáñ Ùáï»óáõÙ, áñÁ ÑÇÙÝí³Í ¿
é»ÏáõñëÇí Ý»ÛñáÝ³ÛÇÝ ó³Ýó»ñÇ íñ³, áñáÝù Ñ³ßíÇ »Ý ³éÝáõÙ ïñ³Ù³µ³Ý³Ï³Ý
³ñï³Ñ³ÛïáõÃÛáõÝÝ»ñÇ µÝ³Ï³Ý Ñ³ïÏáõÃÛáõÝÝ»ñÁ, µ³Õ³¹ñ³Ï³ÝáõÃÛáõÝÁ ¨ ³ëáóÇ³-
ïÇíáõÃÛáõÝÁ: ²é³ç³ñÏíáÕ ×³ñï³ñ³å»ïáõÃÛáõÝÁ MSCN-Ç (Multi-Set Convolutional Net-
work) ÁÝ¹É³ÛÝáõÙÝ ¿ ¹Ç½áõÝÏóÇ³ ¨ ÏáÝÛáõÏóÇ³ ûå»ñ³ïáñÝ»ñ å³ñáõÝ³ÏáÕ Ñ³ñóáõÙÝ»ñÇ
Ñ³Ù³ñ: Üå³ï³ÏÝ ¿ Ý»ñÏ³Û³óÝ»É Ï³Ù³Û³Ï³Ý ïñ³Ù³µ³Ý³Ï³Ý ³ñï³Ñ³ÛïáõÃÛáõÝ
³ÝÁÝ¹Ñ³ï í»Ïïáñ³ÛÇÝ ï³ñ³ÍáõÃÛ³Ý Ù»ç` Ñ³Ù³ï»Õ»Éáí »ÝÃ³³ñï³Ñ³ÛïáõÃÛáõÝ»ñÇ
í»ÏïáñÝ»ñÁ` Áëï ûå»ñ³ïáñÇ ï»ë³ÏÇ: ²é³ç³ñÏíáÕ Ùáï»óáõÙÁ Ñ³Ù»Ù³ïí»É ¿
ÑÇëïá·ñ³Ù³ÛÇÝ Ùáï»óÙ³Ý Ñ»ï ¨ óáõÛó ¿ ïñí»É, áñ ³ÛÝ ½·³ÉÇáñ»Ý ·»ñ³½³ÝóáõÙ ¿
ÑÇëïá·ñ³Ù³ÛÇÝ Ùáï»óÙ³ÝÁ

Îöåíêà ìîùíîñòè SQL-çàïðîñà ñ ïîìîùüþ ðåêóðñèâíûõ
íåéðîííûõ ñåòåé

Äàâèä Ñ. Êàðàìÿí

Åðåâàíñêèé ãîñóäàðñòâåííûé óíèâåðñèòåò
e-mail: davkar98@gmail.com

Àííîòàöèÿ

×òîáû èçó÷èòü ñëîæíûå âçàèìîäåéñòâèÿ ìåæäó ïðåäèêàòàìè è òî÷íî îöåíèòü
ìîùíîñòü SQL-çàïðîñà, áûëà ñêîíñòðóèðîâàíà íîâàÿ ñòðóêòóðà, îñíîâàííàÿ íà
ðåêóðñèâíûõ íåéðîííûõ ñåòÿõ ñ äðåâîâèäíîé àðõèòåêòóðîé, êîòîðûå ó÷èòûâàþò
åñòåñòâåííûå ñâîéñòâà ëîãè÷åñêèõ âûðàæåíèé: êîìïîçèöèîííîñòü è n-àðíóþ
àññîöèàòèâíîñòü. Ïðåäëàãàåìàÿ àðõèòåêòóðà ÿâëÿåòñÿ ðàñøèðåíèåì MSCN(Multi-
Set Convolutional Network) äëÿ çàïðîñîâ, ñîäåðæàùèõ îïåðàòîðû êîíúþíêöèè è
äèçúþíêöèè. Öåëü ñîñòîèò â òîì, ÷òîáû ïðåäñòàâèòü ïðîèçâîëüíîå ëîãè÷åñêîå
âûðàæåíèå â íåïðåðûâíîì âåêòîðíîì ïðîñòðàíñòâå ïóòåì îáúåäèíåíèÿ
âåêòîðîâ ïîäâûðàæåíèé â ñîîòâåòñòâèè ñ òèïîì îïåðàòîðà. Ïðåäëàãàåìûé
ïîäõîä áûë ñðàâíåí ñ ïîäõîäîì, îñíîâàííûì íà ãèñòîãðàììàõ, íà ðåàëüíîì
íàáîðå äàííûõ è áûëî ïîêàçàíî, ÷òî ïðåäëîæåííûé ïîäõîä çíà÷èòåëüíî
ïðåâîñõîäèò ãèñòîãðàììû.

Êëþ÷åâûå ñëîâà: ðåêóðñèâíûå íåéðîííûå ñåòè, ðåïðåçåíòàòèâíîå îáó÷åíèå,
ìîùíîñòü SQL-çàïðîñîâ, êîìïîçèöèîííîñòü, ñëîæíûå ëîãè÷åñêèå âûðàæåíèÿ.

´³Ý³ÉÇ µ³é»ñ` é»ÏáõñëÇí Ý»ÛñáÝ³ÛÇÝ ó³Ýó»ñ, Ý»ñÏ³Û³óáõóã³Ï³Ý áõëáõóáõÙ, Ñ³ñó-
Ù³Ý Ñ½áñáõÃÛáõÝ, µ³Õ³¹ñ³Ï³ÝáõÃÛáõÝ, µ³ñ¹ ïñ³Ù³µ³Ý³Ï³Ý ³ñï³Ñ³ÛïáõÃÛáõÝÝ»ñ:

	04_David_Karamyan_54_41_52
	David_Karamyan+

