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Abstract

The article presents the proof of the homeomorphism between Euclidean subspace
ES of the classical three-body system and 6D Riemannian manifold M, which allows
reducing the dynamical problem to the system of the 6th-order.
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1. Introduction

As is known, the time evolution of the classical system is uniquely determined by the Hamil-
ton equations and is usually reduced to a system of ordinary differential equations of the
second order. Integrating this system of a differential equation means finding all possible
functions of one variable “t” (time), which, when substituted into equations, turns them into
an identity. In the case of dynamical systems, as a rule, the system of equations cannot be
fully integrated, since the number of integrals of motion often is less than the number of
degrees of freedom.

In the series of works [1]-[5], using the example of the classical three-body problem,
it was shown that the use of Riemannian geometry makes it possible to reveal new hid-
den symmetries of a dynamical system, which makes the integration of the problem more
completel.

In this paper we examine the question of homeomorphism between 6 D Euclidean subspace
E® and 6D manifold M. In particular, the question of the decomposition of a manifold in
the form M & M® x 83, is proved, where M®) denotes the sum of 84 oriented in 9D
Euclidean space 3D manifolds and S3; is the group symmetry SO(3) at the given point
M, € M®.
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2. On Homeomorphism Between the Euclidean Subspace and the Confor-
mally Euclidean Manifold

Proposition 1: Let E° be a Euclidean subspace with metric ,,({p}), on which an orthogonal
coordinate system is given:

Py -5 P6 = {p} = P1,P6 € EG) (]-)

and, respectively, M is a conformally Euclidean manifold, which is determined by the metric
tensor gog({x}) and the local coordinate system {z}:

gaﬁ({m}) = g({j})éaﬁv {'CE} = ‘T1’ "'7$6> {j} = Wa o, =1,6, (2>

where g({x}) > 0 is a smooth function belonging to the class C'(R®), then the Fuclidean
subspace ES is homeomorphic to the manifold M.

Proof. Let us consider a linear infinitesimal element ”ds” in both coordinate systems
{p} € E% and {z} € M. Equating them, we can write:

(d8)2 = W/aﬁ({p})dpadpﬂ = guu({i})dxudxya «, 67 H, V= 1a 67 (3>

from which one can obtain the following system of algebraic equations:

YN panpss = guw({5}) = 8({%}) b (4)

where it is necessary to prove that the coefficients p, ,({x}) = 0p,/0x" make sense of
derivatives. In this regard, we must prove that the function p,({z}) is twice differentiable
and continuous in its domain of definition and, in addition, satisfy the symmetry condition:

po«uu({x}) = pa,uu<{X})a v w, v = 17_67 (5>

(Schwartz’s theorem on the symmetry of second derivatives). Recall that the set of coefficients
Pa,u({x}) allows us to perform coordinate transformations {p} — {z}, which we shall call
direct transformations.

Similarly, from (3), one can obtain a system of algebraic equations defining inverse trans-
formations:

Yas({p})g ™ ({7}) = 2" 2" 50,0, (6)

where 2, ({p}) = 92+ /0p™ and yas({p}) = Yaa({p})155({P )7 ({})-

At first we consider the system of equations (4), which is related to direct coordinate
transformations. It is easy to see that the system of algebraic equations (4) is underdeter-
mined with respect to the variables p, ,({x}), since it consists of 21 equations, while the
number of unknown variables is 36. Obviously, when these equations are compatible, then
the system of equations (4) has an infinite number of real and complex solutions. Note
that for the classical three-body problem, the real solutions of the system (4) are important,
which form a 15-dimensional manifold. Since the system of equations (6) is still defined in a
rather arbitrary way we can impose additional conditions on it in order to find the minimal
dimension of the manifold allowing a separation of the base M®) from the layer UiS]?(L_.
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Let us make new notations:

= Pryus Bu=P2ps Cu =030 Up=Paps Up=Pspu Wy = P (7)

We also require that the following additional conditions be met:

a=as=as=0, B1=0=0=0, G4=C=( =0,
Uy =uy=u3=0, vi=vy=v3=0, w; =wy=ws3=0. (8)

Using (7) and conditions (8) from the equation (4) we can obtain two independent systems
of algebraic equations:

of + 61 + ¢ = 9({p}), arag + B1 B2 + 7% =0,
a3 + B3+ = g({p}), araz + 1685 + 730G =0,
a; + 05 + G = 9({p}), o + o3 + 73 =0, 9)

Qc

(recall that at obtaining (9) it is assumed that v!! = 4*? = 1) and, correspondingly:

YHud 4+ 770; + 0wi 4+ 2(vPugvs + 7 usws + yOvaws) = §({p}),
YHuZ + %02 + w? + 2(vPusvs + v usws + v Cvsws) = §({p}),

YHug + 7°vg + 70w + 2(vPugves + 7 usws + 7 vews) = §({p}),
asiy + asvy + agwy = 0,
byus + bsvs + bgws = 0,

Caig + c5v6 + cgwe = 0. (10)

In equations (10), the following notations are made:
a; = 7"us + 700 + 9" 0ws, by =9 s + 9706 + Y 0ws, o =7 ug + 9P vg + 9w,

where 1, j, k = 4, 6.

It should be noted that the solutions of algebraic systems (9) and (10) form two different
3D manifolds &® and R®), respectively. The manifold &3 is in a one-to-one mapping
on the one hand with the subspace E* > {p} (where E* C E° the internal space in the
hyperspherical coordinate system), and on the other hand with the manifold M® (see Fig.
1). Note that this statement follows from the fact that all points of the manifold M) and
the subspace E3, are pairwise connected through the corresponding derivatives (see (4)),
which, as unknown variables, enter the algebraic equations (9), and, in addition, as shown
there exist also inverse coordinate transformations (see Appendix).

Now we prove the continuity of these mappings.

Recall that the unknowns in the equations (9), are in fact functions of coordinates {p}.
Performing a shift of coordinates {p} — {p} + {0p} in (9), we get the following system of
equations:

) @ + P12 + 771G = 0,
. @+ BB+ 720 ¢G =0,
; Qs + Pof3s + (ol = 0, (11)

ai + 07+ 77 = g({p})
as + 85 + 737G = g({p})
a3+ 03 + 3¢ = g({p})
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6(5}

B % 2 M®

Fig. 1: In this diagram all spaces are homeomorphic to each other, i.e., E3 ~ 63 ~ M©),

where g({p}) = g({p} + {0p}), {6p} = (6p',0p%,0p%). Assuming that [6{p}| < 1, in the
equations (11), we can expand the functions in a Taylor series on these small parameters
and taking into account the system of equations (9), we get:

5p'{2(cnens + BrBri + 70 C0) +45¢G — 3.({p1) } = O(l6{p}?),
5p'{2(20i + Bafoi + 77 CCai) + 3G — 3.:({p}) } = O(16{p}?),
0p'{2(sasi + Bafss + 77 CaCsi) + 756 — 9.:({p}) } = O(16{z}?),
opt{onan; + anans + Bifai + Babri + 77 (GGai + GGri) + 775 GG b= O(6{p}?),
( )
( )

5Pi{041043i + o 4 01035 + G361 + 7P (GG + GG) + V?f@@s}: O(16{p}*),
5PZ{042(13,i + a3z + G203 + B362i + 7> (GCi + (3i) + V?EC2<3}: O(15{p}*),
(12)
where 7 = 1,3 and summation is performed by dummy indices.
If we require that the expressions with the same increments be equal to zero, then from

(12) one can obtain an underdetermined system of algebraic equations, i.e., 18 equations for
finding 27 unknowns variables:

2(aran; + BB + 7 GG) + 73@3@2 - 3g.:{p}) =0,

2(az0a; + Bofoi + 7P Clei) + 775G — §,:({p}) = 0,

2(azas; + 33035 + 7 CGs0) + 7,31'3<§ —g,.:{p}) =0,

vty + arqa; + Bofii 4 BiBei + 7 (GG + GGi) + 7??(1(2 =0,

ason; + arag; + Bs01i + B1Bsi + 77 (GG + 1Gi) + 75 G = 0,
302; + aoaisi + B3f2i + Boflzi + 72 (GG + (Gai) + ’Y??@C:a = 0. (13)
Recall that the set of coefficients {c} = (01,...,09) = [a@ = (a1,a9,a3), B = (b1, B2, [3),

¢ = ((1, (o, ¢3)] belongs to the manifold &),

Now, we can require that the second derivatives be symmetric o;; = o0j;, where
{o} = |a,3,¢] and i, = 1,3. This, as can be easily seen, allows us to reduce the number
of unknown variables and make the system of equations definite, i.e., 18 equations for 18

unknown variables.
The system of equations (13) can be written in canonical form:

AX =B, A= (d,), v =1,18, (14)

where A € R'8*1® ig the basic matrix of the system, B € R'® and X € R!® are columns of
free terms and system solutions, respectively. Note that, for an arbitrary point {p;} € E3,
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Fig. 2: The form of an oriented manifold generated by a system of equations (9). Note that
the calculations of the equations system (9) were performed taking into account the following
transformations v33¢; — 1, v33¢ — ¢ and v33(3 — (3. The first figure shows a general view of
a manifold in three-dimensional space, which obviously is a sphere with topological features. The
second figure shows the projection of a sphere onto a plane (ag,a3) in the form of a circle, from
which one can see a cutting circle in the center. There are obviously six such circular cuts on a
sphere.
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Fig. 4: As can be seen, this manifold also has a topology.
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Fig. 5: As can be seen, this manifold also has a topology.

the system of equations (9) generates sets of solutions {¢} = [«, 3, (] that continuously fill
a region of E? space, forming 3D manifold &®). As for the system of equations (14), it has
a solution if the determinant of the basic matrix A is nonzero (see Appendix):

det(d,,) # 0, w, v =1,18.

On the other hand, the algebraic system (14) does not have a solution when det(d,,) = 0.
In this case at each point {p;} there exists a countable set 20 of coefficients {c} = [a, 3, (]
such that det(d,,) = 0. It is easy to verify that the measure of this set in comparison with
the measure of the & for which det(d,,) # 0, is equal to zero, i.e., 20 = {0}. In other
words, for the case under consideration Schwartz’s theorem holds, and o, (where ¢ = 1,9)
and d,, (see (13)) have the sense of the first and second derivatives, respectively.

The same is easily proved for inverse mappings.

Let us consider the open set VG = U,G,, consisting of the union of cards G, arising
at continuous mappings f : {p} — {Z} using algebraic equations (9). Proceeding from the
foregoing, it is obvious that the maps can be chosen so that the immediate neighbors have
intersections comprising at least one common point, that is a necessary condition for the
continuity of the mappings. Using the above arguments, we assert that the atlas G can be
widened up to G = M®),

Now let us discuss the structure of the manifold M®). It is easy to see that the in-
dependent {o} parameters form 9D space R?, in which the system of algebraic equations
(9) generates 3D oriented manifolds. These manifolds can be summed up as sets using a
certain order by gluing manifolds having common planes. As a result of this gluing, which
similar to the the operation of connected sum of topological manifolds, the 3D manifold
MO = Ungg), is formed. The number of submanifolds M§3> can easily be calculated by

the formula C)" = #lm),, where n and m denote the dimension of space R? and the di-

mension of the manifold ME?’) immersed into R?, respectively. As the calculations show (see
Fig. 2-5), the generated C3 = 84 topological manifolds can be grouped into four incongruent
groups of manifolds. It is also necessary to note that all these varieties are oriented in a
9-dimensional space in the sense that they are well-defined 3D submanifolds.

Thus, all the conditions of the theorem of a homeomorphism between metric spaces E3
and M®) are satisfied, and therefore we can say that these spaces are homeomorphic or
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topologically equivalent, i.e., f : E3 — M®).

As for the system of algebraic equations (10), then at each point of the internal space
M;(xt, 22, 2%); € MB) | it generates 3D manifold R that is a local analogue of the Euler
angles and, consequently, U;Sy; ~ R®. The layer R, continuously passing through all
points of the basis M®) | fills the subspace ES.

Finally, taking into account the aforesaid, we can conclude that the spaces E® and M,
are homeomorphic too. In addition, the manifold M can be represented in the form of
decomposition M =2 M) x 81?4 Proposition 1 is proved.

3. Conclusion

As A. Poincaré rightly pointed out, there is no finest geometry, there is a geometry convenient
for solving a specific task. Usually, when studying complex dynamical systems, coordinate
transformations are used to separate variables and reduce the original system. In particular,
by coordinate transformations, the three-body problem, which is a system of 18th order, is
reduced to the system of 8th order. However, as we have shown, it is possible to make the
reduction of a dynamical system more complete if we use the curve (Riemannian) geometry.
Note that in this case it becomes possible to reveal the hidden symmetries of internal motion
and, accordingly, to obtain additional integrals of motion. For a three-body system, replacing
the geometry allows us to reduce the problem to the 6th order system. The main difficulty
arising at the solution of this problem is the generalization of the well-known Poincaré
theorem on a homomorphism between the 3D sphere with unit radius and 3D compact. In
this work, the possibility of such a generalization is strictly proved.

4. Appendix

As mentioned (see (14)), the vector X consists of 18 independent components. Its transposed
form looks like this:

X" = ( 11, g, 13, O, (i3, 33, B11, B2, P13, Be2, B23, B33, C11, C12, €13, C22, C23, (33 )

Taking into account the form of the vector X, we can write the explicit form of the basic
matrix:

A d®
A= . , (15)

1 18
dig -+ dig

where the superscript indicates the column number, while the subscript indicates the line
number. As for the explicit form of elements d = d,,, where p,v = 1,18, then we can
find them by multiplying the basic matrix A with the vector X (see equation (14)) and
comparing with the system of equations (13). In particular, it is easy to verify that these
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terms are equal:

di =d3=d3 =2d}, = 2d}, = 2d}, = 2d}5 = 2d}, = 2d}; = 2ay,

d3 =di = di =2diy = 2d}, = 2d}, = 2d3 = 2d), = 2d{; = 2ay,

d? =d3 = dy = 2dj3 = 2d7, = 2d}; = 2djs = 2dy; = 2d{5 = 20,

dy = d3 = dy = 2dj, = 2d)) = 2dyy = 2dyy = 2dy; = 2d35 = 20y,

di = d150 = d161 = 2d170 = Qdﬁ = 2d192 = 2d196 = Qdi% = Qdﬁ = 20,,

d? - d%l =dfy = 2d173 = 2dy, = Qd% - 2d186 - 2d%(7) - 2d%51; = 2033,

diy = diy = diy = 2dyg = 2d3} = 2dy5 = 213 = 2dy = 2dy5 = 297G,

dyf = d5° = diy = 2dYy = 2dyy = 2d33 = 2dy5 = 2d); = 2d15 = 297G,

d7 = dy = dis = 2dy5 = 2dyg = 2d1{ = 21§ = 217 = 2,3 = 297G, (16)

All elements of the matrix (15) missing in (16) are identically zero.
As is known, the algebraic system (13) or (14) does not have a solution in the case when
the determinant of the matrix is zero det(A) = det(d,,) = 0. A class consisting of sets

of coefficients {o} for which the determinant is zero, can be countable and the measure,
respectively, will be equal to zero 20 = {o}.
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AnHoTanuys

B craThbe mpeacTaBAEHO AOKa3aTEALCTBO roMeoMopduiMa MeKAY €BKAUAOBBLIM
MIOATIPOCTPAHCTBOM [E® KAaaccMYeckoM CHCTeMBI Tpex TeA W 60 pHUMaHOBHIM
MHOTrooOpa3ueM M, 4TO MO3BOASIET CBECTU AMHAMHUUYECKYIO 3apauy K CUCTeMe 6-To
MTOPSIAKA.

KAroueBBEIE CAOBa: CHCTeMa HEAOOIIPEAEAEHHBIX aAreOpandyecKUX YpaBHEHUH,
pPUMaHOBO MHOTrooOpa3ue, OpPUEHTUPOBAHHOE TOIOAOTMYECKOe MHOTrooOpa3sue,
roMmeoMop(du3M MeRAy MHOTOOOPAa3UsIMU.
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