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Abstract

We prove a Meyniel-type condition and a Bang-Jensen, Gutin and Li-type condition
for a strongly connected balanced bipartite digraph to be even pancyclic.

Let D be a balanced bipartite digraph of order 2a > 6. We prove that

(i) If d(z) + d(y) > 3a for every pair of vertices x, y from the same partite set, then
D contains cycles of all even lengths 2,4, ..., 2a, in particular, D is Hamiltonian.

(ii) If D is other than a directed cycle of length 2a and d(x) + d(y) > 3a for every
pair of vertices x, y with a common out-neighbor or in-neighbor, then either D contains
cycles of all even lengths 2,4, ...,2a or d(u) 4+ d(v) > 3a for every pair of vertices u,
v from the same partite set. Moreover, by (i), D contains cycles of all even lengths

2,4,...,2a, in particular, D is Hamiltonian.
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cyclic.
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1. Introduction

In this paper, we consider finite digraphs without loops and multiple arcs. We assume that
the reader is familiar with the standard terminology on digraphs and refer the reader to
[1]. Every cycle and path is assumed simple and directed. A cycle in a digraph D is called
Hamiltonian if it includes all the vertices of D. A digraph D is Hamiltonian if it contains
a Hamiltonian cycle. A digraph D of order n > 3 is pancyclic if it contains cycles of every
length k, 3 <k < n.

There are numerous sufficient conditions for the existence of a Hamiltonian cycle in a
digraph (see, e.g., [1] - [10]). It was proved (see, e.g., [1], [6], [8], [9], [11] - [14]) that a number
of sufficient conditions for a digraph (undirected graph) to be Hamiltonian are also sufficient
for the digraph to be pancyclic (with some exceptions). For hamiltonicity, the more general
and classical one is the following theorem due to M. Meyniel.

Theorem 1: (Meyniel [10]). Let D be a strong digraph of ordern > 2. Ifd(x)+d(y) > 2n—1
for all pairs of non-adjacent vertices in D, then D is Hamiltonian.
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Notice that Meyniel’s theorem is a generalization of Ghouila-Houri’s and Woodall’s the-
orems.

A digraph D is a bipartite if there exists a partition X, Y of its vertex set into two partite
sets such that every arc of D has its end-vertices in different partite sets. It is called balanced
if | X| = |Y|. Following [1], we will say that a balanced bipartite digraph D of order 2a is
even pancyclic (note that a number of authors use the term "bipancyclic” instead of “even
pancyclic”) if it contains cycles of all even lengths 4,6, ..., 2a.

An analogue of Meyniel’s theorem for the hamiltonicity of balanced bipartite digraphs
was given by Adamus et al. [3].

Theorem 2: (Adamus et al. [3]). Let D be a balanced bipartite digraph of order 2a > 4.
Then D is Hamiltonian provided one of the following holds:
(a) d(x) + d(y) > 3a + 1 for each pair of non-adjacent vertices x,y € V(D);
(b) D is strong and d(z) 4+ d(y) > 3a for each pair of non-adjacent vertices x,y € V(D);
(c) the minimal degree of D is at least (3a + 1)/2;
(d) D is strong, and the minimal degree of D is at least 3a/2.

Meszka [15] investigated the even pancyclicity of a balanced bipartite digraph satisfying
a weaker condition than those in Theorem 2(a). He proved the following theorem.

Theorem 3: (Meszka [15]). Let D be a balanced bipartite digraph of order 2a > 4. Suppose
that d(x) + d(y) > 3a+ 1 for each two distinct vertices x,y from the same partite set. Then
D contains cycles of all even lengths 4,6, ..., 2a.

Let z,y be a pair of distinct vertices in a digraph D. The pair {z,y} is a dominated pair
(respectively, dominating pair) if there is a vertex z € V(D) \ {z,y} such that z — {z,y}
(respectively, {z,y} — z). We will say that a pair of vertices {u,v} is a good pair if it is
dominated or dominating. In this case we will say that u (respectively, v) is a partner of
v (respectively, u). In [5], Bang-Jensen et al. gave a new type condition for a digraph to
be Hamiltonian. In the same paper, they also conjectured the following strengthening of
Meyniel’s theorem.

Conjecture 1: Let D be a strong digraph of order n. Suppose that d(x)+d(y) > 2n—1 for
every good pair of non-adjacent distinct vertices x, y. Then D is Hamiltonian.

They also conjectured that this can even be generalized to the following:

Conjecture 2:. Let D be a strong digraph of order n. Suppose that d(z) + d(y) > 2n — 1
for every pair of non-adjacent distinct vertices x, y with a common in-neighbor. Then D is
Hamiltonian.

In [5] and [4], it was proved that Conjecture 1 (2) is true if we also require an additional
condition.

Theorem 4: (Bang-Jensen et al. [5]). Let D be a strong digraph of order n > 2. Suppose
that min{d(x),d(y)} > n—1 and d(z) +d(y) > 2n —1 for any pair of non-adjacent vertices
x,y with a common in-neighbor. Then D is Hamiltonian.
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In [4], it was proved that if in Conjecture 1 we replace the degree condition d(z)+d(y) >
2n — 1 with d(z) + d(y) > 5n/2 — 4, then Conjecture 1 is true.

There are some versions of Conjecture 1 and 2 for balanced bipartite digraphs. (see, e.g.,
Theorems 5, 6 and 7).

Theorem 5: (Adamus [2]). Let D be a strong balanced bipartite digraph of order 2a > 6.
If d(x) 4+ d(y) > 3a for every good pair of distinct vertices x,y, then D is Hamiltonian.

An analogue of Theorem 4 was given by Wang [16], and recently strengthened by the
author [17].

Theorem 6: (Wang [16]). Let D be a strong balanced bipartite digraph of order 2a > 4. Sup-
pose that, for every dominating pair of vertices {x,y}, either d(x) > 2a—1 and d(y) > a+1
ord(y) > 2a—1 and d(z) > a+ 1. Then D is Hamiltonian.

Before stating the next theorem we need to define a digraph of order eight.

Example 1: Let D(8) be the bipartite digraph with partite sets X = {xq, z1, xa,
3} and Y = {yo,y1, Y2, y3}, and A(D(8)) contains exactly the arcs yoxy, y1%o, Tayz, T3Y2
and all the arcs of the following 2-cycles: x; <> y;, i € [0,3], yo <> T2, Yo <> T3, Y1 <> T2 and
Y1 <> T3.
It is not difficult to check that D(8) is strongly connected, maz{d(z),d(y)} > 2a — 1 for
every pair of vertices {z,y} with a common out-neighbor, but it is not Hamiltonian.
Indeed, if C' is a Hamiltonian cycle in D(8), then C' would contain the arcs z1y; and
Toyo and therefore, the path x1y;20y or the path xgyoriy;, which is impossible since

N~ (zo) = N~ (21) = {vo, y1 }-

Theorem 7: (Darbinyan [17]). Let D be a strong balanced bipartite digraph of order 2a > 8.
Suppose that max{d(z),d(y)} > 2a — 1 for every pair of distinct vertices {x,y} with a com-
mon out-neighbor. Then D is Hamiltonian unless D is isomorphic to the digraph D(8).

Motivated by the Bondy famous metaconjecture, the author, together with Karapetyan
[20],proposed the following problem:

Problem 1: Characterize those digraphs, which satisfy the conditions of Theorem 5 (or 6
or 7) but are not even pancyclic.

This problem for Theorems 6 and 7 was solved by the author [18] (Theorem 8(ii)), and
for Theorem 5 by Adamus [19] (Theorem 9).

Theorem 8: Let D be a strong balanced bipartite digraph of order 2a.

(i). (Darbinyan [18]). If D contains a cycle of length 2a — 2 and max{d(x),d(y)} >
2a — 2 > 6 for every pair of distinct vertices {x,y} with a common out-neighbor, then for
every k, 1 <k <a—1, D contains a cycle of length 2k.

(ii). (Darbinyan [18]). If D is not a directed cycle of length 2a > 8 and
max{d(x),d(y)} > 2a — 1 for every pair of distinct vertices {x,y} with a common out-
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neighbor, then for every k, 1 < k < a, D contains a cycle of length 2k (in particular, D is
even pancyclic) unless D is isomorphic to the digraph D(8).

(iii). (Darbinyan and Karapetyan [20]). Suppose that D is not a directed cycle of length
2a > 10 and max{d(x),d(y)} > 2a — 2 for every pair of distinct vertices {x,y} with a com-
mon out-neighbor. Then D contains a cycle of length 2a — 2 unless D is isomorphic to a
digraph of order ten, which we specify.

The following theorem by Adamus (Theorem 9) and the main result of this paper (The-
orem 10) were proved simultaneously and independently.

Theorem 9: (Adamus [19]). Let D be a balanced bipartite Hamiltonian digraph of order
2a > 6 other than a directed cycle of length 2a. Suppose that d(x)+ d(y) > 3a for every good
pair of distinct vertices x,y. Then D contains cycles of all even lengths 2,4, ..., 2a.

Theorem 10: Let D be a strong balanced bipartite digraph of order 2a > 6 with partite sets
X and Y. If d(x) + d(y) > 3a for every pair of distinct vertices {x,y} either both in X or
both in'Y', then D contains cycles of all even lengths less than or equal to 2a (in particular,
D is Hamiltonian,).

The last result (Theorem 10) was presented at the ”International Conference Dedicated
to 90th Anniversary of Sergey Mergelyan”, 20-25 May, 2018, Yerevan, Armenia.
Using some arguments of [2] by Adamus, we can prove the following lemma.

Lemma 1: Let D be a balanced bipartite digraph of order 2a > 6 with partite sets X and Y .
Suppose that D is not a directed cycle of length 2a and d(u) + d(v) > 3a for every good pair
of distinct vertices u, v. Then D either is even pancyclic or every pair of distinct vertices
{z,y} from the same partite set is a good pair.

The following theorem follows from Theorem 10 and Lemma 1.

Theorem 11: Let D be a strong balanced bipartite digraph of order 2a > 6 other than a
directed cycle of length 2a. Suppose that d(x) + d(y) > 3a for every good pair of distinct
vertices x,y. Then D contains cycles of all even lengths 2,4, ..., 2a.

It is worth to noting that in the proof of Theorem 10 does not use the fact that D is
Hamiltonian. Thus, we have a common alternative proof for Theorems 2, 3, 5 and 9. Note
that if a balanced bipartite digraph satisfies the condition of Theorem 2(a) (or Theorem
2(c)), then D is strong.

Example 2: For any even integer a > 2 there is a non-strongly connected balanced bipartite
digraph D of order 2a with partite sets X andY, such that d(z)+d(y) > 3a for every pair of
distinct vertices {x,y} either both in X or both in'Y i.e., if D is not strong, then Theorem
10 is not true.

To see this, we take two balanced bipartite complete digraphs both of order a (a is even)
with partite sets U, V and Z, W, respectively. By adding all the possible arcs from Z to
V and from W to U we obtain a digraph D. It is easy to check that d(z) + d(y) > 3a for
every pair of non-adjacent distinct vertices {x,y} of D, but D is not strongly connected and
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hence, D is not Hamiltonian.

2. Terminology and Notations

In this paper, we consider finite digraphs without loops and multiple arcs. Terminology and
notations not defined here or above are consistent with [1]. The vertex set and the arc set
of a digraph D are denoted by V(D) and A(D), respectively. The order of D is the number
of its vertices. If xy € A(D), then we also write x — y and say that = dominates y or y
is an out-neighbor of x and x is an in-neighbor of y. If x+ — y and y — x we shall use the
notation z < y (x < y is called 2-cycle). We set @[z, y] = 1 if zy € A(D) and @[z, y] = 0
if xy ¢ A(D).

If A and B are two disjoint subsets of V(D) such that every vertex of A dominates every
vertex of B, then we say that A dominates B, denoted by A — B. Similarly, A <> B means
that A — Band B — A. If x € V(D) and A = {2} we sometimes write = instead of {z}. Let
Np(x), Np(z) denote the set of out-neighbors, respectively the set of in-neighbors of a vertex
z in a digraph D. If A C V(D), then Nj(x, A) = AN Nj(x) and Nj(z, A) = AN Np(z).
The out-degree of x is df(x) = |Nj ()] and d(z) = |[Np ()| is the in-degree of x. Similarly,
dj(z, A) = [N (z, A)| and dpp(z, A) = |Np(x, A)|. The degree of the vertex z in D is defined
as dp(r) = dj(x)+dp(x) (similarly, dp(z, A) = df(x, A)+dp(z, A)). We omit the subscript
if the digraph is clear from the context. The subdigraph of D induced by a subset A of V(D)
is denoted by D[A].

For integers a and b, a < b, let [a, b] denote the set of all the integers, which are not less
than a and are not greater than b.

The path (respectively, the cycle) consisting of the distinct vertices z1, xa, . .., T, (m > 2)
and the arcs x;x;,1, i € [1,m — 1] (respectively, z;x;,1, 1 € [I,m — 1], and z,,21), is denoted
by x1xs -« -z, (respectively, z125 - - - x,x1). The length of a cycle or a path is the number of
its arcs. We say that xixs - - - x,, is a path from x; to x,, or is an (x1, x,,)-path. If a digraph
D contains a path from a vertex x to a vertex y we say that y is reachable from z in D. In
particular, x is reachable from itself.

We denote by K, the complete bipartite digraph with partite sets of cardinalities a and
b. A digraph D is strongly connected (or, just, strong) if there exists a path from x to y and
a path from y to x for every pair of distinct vertices z,y. Two distinct vertices z and y are
adjacent if xy € A(D) or yxz € A(D) (or both).

Let D be a bipartite digraph with partite sets X and Y. A matching from X to Y (from
Y to X) is an independent set of arcs with origin in X and terminus in Y (origin in Y and
terminus in X). (A set of arcs with no common end-vertices is called independent). If D is
balanced, one says that such a matching is perfect if it consists of precisely |X| arcs.

3. Preliminaries

In [21] and [11], the author studied pancyclicity of a digraph with the condition of the Meyniel
theorem. Before stating the main result of [11] we need to define a family of digraphs.

Definition 1: For any integers n and m, (n 4+ 1)/2 < m < n — 1, let ®I* denote the
set of digraphs D, which satisfy the following conditions: (i) V(D) = {x1,xq,...,x,}; (ii)
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TpTp_1 ... ToT1Ty 08 a Hamiltonian cycle in D; (iii) for each k, 1 < k < n —m+ 1, the
vertices Ty and Tyim—1 are not adjacent; (iv) x;z; ¢ A(D) whenever 2 <i+1<j <n and
(v) the sum of degrees for any two distinct non-adjacent vertices is at least 2n — 1.

Theorem 12: (Darbinyan [11]). Let D be a strong digraph of order n > 3. Suppose that
d(xz) + d(y) > 2n — 1 for all pairs of distinct non-adjacent vertices x, y in D. Then ei-
ther (a) D is pancyclic or (b) n is even and D is isomorphic to one of digraphs Ky 5,
K 900 \ {e}, where e is an arbitrary arc of Ky, /5, or (¢) D € @ (in this case D does

not contain only a cycle of length m).
Later, Theorem 12, was also proved independently by Benhocine [22].

Lemma 2: (Adamus et al. [3]). Let D be a strong balanced bipartite digraph of order 2a > 4
with partite sets X and Y. If d(z) + d(y) > 3a for every pair of distinct vertices x, y from
the same partite set, then D contains a perfect matching fromY to X and a perfect matching
from X to Y.

Following [15], we give the following definition.

Definition 2: Let D be a balanced bipartite digraph of order 2a > 4 with partite sets X and
Y. Let M, ={yx; € A(D)|i=1,2,...,a} be a perfect matching from'Y to X. We define
a digraph D*[M,, ;] with vertex set {v1,vq, ..., v} as follows: each vertex v; corresponds to a
pair {x;,y;} of vertices in D and for each pair of distinct vertices v, v;, viv; € A(D*[M, ,])

if and only if x1y; € A(D).

Let D be a balanced bipartite digraph with partite sets X and Y. Let M, , be a perfect
matching from Y to X in D and D*[M, ,] be its corresponding digraph. Further, in this
paper, we will denote the vertices of D (respectively, of D*[M,, ,]) by letters x, y (respectively,
u, v) with subscripts or without them.

The size of a perfect matching M, , = {y;x; € A(D)|i=1,2,...,a} from Y to X in D
(denoted by s(M,,)) is the number of arcs y;x; such that z;y; ¢ A(D).

Using the arguments of [15] by Meszka, we can formulate the following lemma.

Lemma 3: Let D be a balanced bipartite digraph of order 2a > 6 with partite sets X and
Y. Let M, = {yiz; € A(D)|i=1,2,...,a} be a perfect matching from'Y to X. Then the
following hold:

(i). d*(v;) = d*(z;) — 7[% yil and d(v;) = d™(y;) — 7[%%]

(11). If D*[M, ] contains a cycle of length k, where k € [2,al], then D contains a cycle
of length 2k.

(iti). Suppose thal a is even, and D*[M,,] is isomorphic to K, ,» with partite sets
{vi,v9, .. ve2} and {vaj241, Vaja2, - - -, Va}. If D contains an arc from {y1,Y2, ..., Yas2} to
{Zaj241: Tajas2, - Ta}, SAY Yaspxa € A(D), then D contains a cycle of length 2k for all
k=23,...,a.

Proof. The proof of Lemma 3 can be found in [15], but we give it here for completeness.
(i). It follows immediately from the definition of D*[M, ,|.
(ii). Indeed, if v, vs, . .. v;,v;, is a cycle of length k in D*[M, .|, then y;, ©:, yi, @iy Yis - - -
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Vi, i, Vi, is a cycle of length 2k in D.

(iii). By (ii), it is clear that D contains cycles of every length 4k, k = 1,2,...,a/2. It re-
mains to show that D also contains cycles of every length 4k+2, k = 1,2,...,a/2—1. Indeed,
since z;y; € A(D) and x;y; € A(D) for all i € [1,a/2], j € [a/2+ 1,a] and y, 02, € A(D),
from the definition of D*[M, .| it follows that y121Ye/241Ta/2+1Y202Ya /212 a/242Y3
T3 ... TkYa/2+kTa/2+kYa/2TaY1 is a cycle of length 4k + 2 in D.

Lemma 4: (Adamus [2]). Let D be a balanced bipartite digraph of order 2a > 6 other than
a directed cycle of length 2a. Suppose that d(x) + d(y) > 3a for every good pair {z,y} of
distinct vertices in D. Then d(u) > a for all u € V(D).

Now let us prove Lemma 1. For convenience, we will restate it here.

Lemma 1: Let D be a balanced bipartite digraph of order 2a > 6 with partite sets X and Y .
Suppose that D is not a directed cycle of length 2a and d(u) + d(v) > 3a for every good pair
of distinct vertices u, v. Then D either is even pancyclic or every pair of distinct vertices
{z,y} from the same partite set is a good pair.

Proof: Let X = {z1,29,...,2,} and Y = {y1,y2,...,¥a}. Suppose that V(D) contains
a pair of vertices from the same partite set, which is not a good pair. Without loss of
generality, assume that {z1, 25} is not a good pair. Then

Nt () NNt (29) = N (z1) NN~ (22) = 0,d" (1) + d¥ (z2) < a,d (z1) +d (z2) < a.

Hence, d(z1) + d(z2) < 2a. This together with d(x;)
implies that d(z1) = d(x2) = d*(x1) + d¥(z2) = d™(21) +
N+(I1) U N+<l'2> = Ni(l'l) U Ni(l‘g) =Y.

Let z; € X \ {x1,22} be an arbitrary vertex. We claim that {x,z;} or {xs,2;} is a
good pair. Assume that this is not the case. Then (Nt (z1) U Nt (z2)) N NT(x;) = 0, which
contradicts the facts that D is strong and N (x1) U N*(22) =Y. Thus, {x1,2;} or {z2,2;}
is a good pair for all 7, 3 < i < a. Therefore, from condition (A) and d(x;) = d(xs) = a it
follows that d(x;) = 2a for all i, 3 <i < a, ie., D[X UY \ {x1,22}] is a complete bipartite
digraph with partite sets X \ {z1, 22} and Y.

From d(z3) = 2a it follows that d™(z3) = d (x3) = a. Therefore, if D contains a
Hamiltonian cycle, then D contains cycles of all even lengths 2.4, ... 2a.

Now we will show that D contains a Hamiltonian cycle.

Assume first that there is an (z1, x9)-path of length two. Let z1y;25 be an (x1, x9)-path
of length two. Then y12; ¢ A(D) and zoy; ¢ A(D) as {z1, 25} is not a good pair. Now, since
2oy & A(D) and d* (x2) > 1, we may assume that zoys € A(D). From d™ (z1)+d ™ (22) = a >
3 it follows that d~(z1) > 2 or d™ (x2) > 2. Assume that d™ (21, {ys3, Y4, ..., Ya}) > 1. We may
assume that yszq € A(D). Now using the fact that D[ X UY \ {1, z2}] is a complete bipartite
digraph, we see that ysz1y12oyo3ysTys . . . YoTeys is a Hamiltonian cycle in D. Assume now
that d~(z1,{ys,¥a,...,%}) = 0. Then from y,2; ¢ A(D) and d~(z;) = 1 it follows that
yox1 € A(D). Then xoysx is an (x9, z1)-path of length two and d~(z2) > 2. Now, we have
that yoxe ¢ A(D) since {z1,x2} is not a good pair. Therefore, d~(z2, {ys, Ya,- .-, ¥a}) > 1.
Now, by repeating the above argument, we conclude that D is Hamiltonian. Similarly, one
can show that if there is an (29, z1)-path of length two, then again D is Hamiltonian.

and d(x2) > a (Lemma 4)

> a
d~(z3) = a. Now we obtain that
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Assume next that there is no path of length two between x; and x5. Then

d= (1, NT(z3)) = d (29, NT(x1)) = 0, and from N~ (z;) U N~ (z3) = Y it follows that
N~ (x1) = Nt(x1) and N~ (x3) = NT(x3). This together with d(x;) = d(x2) = a implies
that |[NT(z1)| = |[NT(x2)| = a/2, a is even and a > 4. Without loss of generality, we assume
that x1 < {y1,92} and z2 <> {ys_1,%.}. Now, since DX UY \ {z1,25}] is a complete
bipartite digraph, it is not difficult to check that x3y1T1YoT4y3T5Ys - - - T 1Ya—2TaYa_1T2
Yo3 is a Hamiltonian cycle in D. Thus, in all possible cases, D is Hamiltonian. Lemma 1 is
proved. o

4. Proof of the Main Result

Let D be a strong balanced bipartite digraph of order 2a. We say that D satisfies condition
(A) when d(z) + d(y) > 3a for all distinct vertices x, y from the same partite set.
The proof of Theorem 10 will be based on the following three lemmas below.

Lemma 5: Let D be a strong balanced bipartite digraph of order 2a > 6 with partite sets X
and Y. If D satisfies condition (A), then D contains cycles of lengths 2 and 4.

Proof: From condition (A) immediately follows that D contains a cycle of length 2. We will
prove that D also contains a cycle of length 4. By Lemma 2, D contains a perfect matching
from Y to X. Let M, , = {y;x; € A(D)|i=1,2,...,a} be a perfect matching from Y to X.
If for some integers 7, j, 1 < ¢ # j < a, the arcs x;y;, x;y; are in D, then x;y;z;y;2; is a cycle
of length 4. We may, therefore, assume that for every pair of integers 7,5, 1 < i # j < a,
@ zs,y;] + @[xj,y:) < 1. Therefore, for all i € [1,al,

d=(y;) <a—db(z;) =1, if @[z, =0andd (y;) < a—d(z)+ 1, if @[z,5]=1. (1)
Assume that there are two distinct integers 7,5, 1 < 4,5 < a, such that 7[%, vl =
@[z;,y;] = 0. Then, by (1), d (y;) + d*(z;) < a —1 and d~(y;) + d*(z;) < a — 1.
These together with condition (A) and the fact that the semi-degrees of every vertex in D
are bounded above by a thus implies that

6a < d(x;) + d(x;) + d(y;) + d(y;) = d” (i) + d" () + d”(y;) + d" ()
+d+(yz) + d+(yj) + d_(l‘z) + d_<l’j) S 6a — 2,

which is a contradiction.

Assume now that for some i € [1,a], @ [z;, ;] = 0 and for all j € [1,a]\{i}, @[z;,y;] = 1.
Without loss of generality, we may assume that i = 1. By (1), d"(y1) + d*(z1) < a—1 and
d~(yo)+d* (x2) < a+1. If for some k € [3,a], yoxy, € A(D) and yrxo € A(D), then zoysxyyrts
is a cycle of length 4 in D. We may, therefore, assume that 7[3/2, x| + 7[%, x9] < 1 for all
k € [3,a]. This implies that

d™(z2) + d* (y2) = d™(v2, {y1, v2}) + d" (g2, {w1, 22}) + d" (22, Y \ {w1,92})
+dt (y2, X \ {z1,12}) <d+a—-2=a+2.

Using the above inequalities and condition (A), we obtain

6a < d(x1) 4 d(x2) + d(y1) + d(y2) = d~ (1) + d " (21) + d™ (y2) + d*(22)
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+d_(l’2> + d+(y2) + d_<$1) + d+(y1> S 5a + 2,

which is a contradiction since a > 3.

Assume finally that x;y; € A(D) for all i € [1,a]. In this case, by the symmetry between
the vertices x; and y;, similar to (1), we obtain that d~(z;) + d*(y;) < a + 1. This together
with (1) implies that for any 7, 7 (1 <i# j < a),

6a < d(z;) + d(z;) + d(y;) + d(y;) < 4da+4,

a contradiction since a > 3. Lemma 5 is proved.

Remark 1: There is a strong balanced bipartite digraph of order 4, which satisfies condition
(A), but contains no cycle of length 4. To see this, we consider the following digraph with
vertex set V(D) = {1, x2,y1,y2} and arc set D(A) = {z1y2, yoa, T2Y2, T2y,

Y171}

Lemma 6: Let D be a strong balanced bipartite digraph of order 2a > 6 with partite sets X
and Y. Let M, , = {y,x; € A(D)|i=1,2,...,a} be a perfect matching from Y to X in D
such that the size s(M, ) of M, , is maximum among the sizes of all the perfect matching
fromY to X in D. If D satisfies condition (A), then the digraph D*[M, .| either is strong
or D contains cycles of all lengths 2,4, ..., 2a.

Proof: Notice that, by Lemma 5, D contains cycles of lengths 2 and 4. Suppose that the
digraph D*[M,, ;] is not strong. Then in D*[M, .| there are two distinct vertices, say v; and
v;, such that there is no path from vy to v; in D*[M,,]. Let U be the set of all vertices
reachable from v; and W be the set of all vertices from which v; is reachable. Notice that

neU,v;e Wand UNW = .
Case 1. d"(vy) > 1 and d~(v;) > 1.

Then |U| > 2 and |W| > 2. Let v;, vy be two distinct vertices in U and v, v, be two distinct
vertices in WW. From condition (A) and the fact that the semi-degrees of every vertex in D
are bounded above by a it follows that

d(z)) +d"(z) > a and d (z,) +d (z,) > a. (2)
By Lemma 3(i),
d* () + d* (vp) = d (2) + d¥ (w) = @[, y] = @ g, yl,

and
d™(vp) +d " (vg) = d (yp) +d (yg) — 7[13117 Yol — 7[xqa Yal- (3)

It follows from them and (2) that d*(v) + d™(vx) > a —2 and d~(v,) + d~(vy) > a — 2.
Without loss of generality we may assume that d*(v;) > (d*(v;) + d¥(vg))/2 and d~(v,) >
(d~(vp) + d~(vp))/2. These imply that d*(v;) > (a —2)/2 and d™(v,) > (a — 2)/2, which in
turn imply that |U| > a/2 and |W| > a/2.

If d*(v)+d* (v,) > a—1ord (v,)+d (vy) > a—1, then |U| > (a+1)/20r |W| > (a+1)/2,
respectively. Hence |U| + |W/| > (2a + 1)/2, which is a contradiction since |U| + |W| < a.
Using (2) and (3), we may therefore assume that

d™(v) +d"(vp) = d"(z) +d () —2=d (v,) +d (v,) =d (y,) +d (ys) —2=0a—2.
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Then it is easy to see that the arcs x;y;, Yk, Ty, and z,y, are in D, |U| = |W| = a/2 and
V(D*[M,,]) = UUW. In particular, a is even. Without loss of generality, we assume that
U= {vi,vs,...,0q2} and W = {va/241,Vaj242,---,Va}. Since there is no arc from a vertex
in U to a vertex in W, the following holds:

A({z1, o, - - aIa/2} — {ya/2+17ya/2+27 o Ya)) = 0. (4)

Therefore, if ¢ € [1,a/2] and j € [a/2+ 1,a], then d¥(z;) < a/2 and d~(y;) < a/2. Together
with (2) they imply that d*(x;) = d(y;) = a/2 and

z; = {y1, ¥, - - - 7ya/2} and {%/2+17 Taj2+25 - - ,Ta} — Yy (5)
for all i € [1,a/2] and j € [a/2 + 1, a], respectively. Therefore, by condition (A),
3a < d(z;) +d(zy) <a+d (x;) +d (zg),

for every pair of i,k € [1,a/2]. This implies that d~(z;) = d~(zx) = a, which means that
{vi,v2,.. ..y} — {@i, xx}. Similarly, y; — {z1,22...,2,}, for all j € [a/2 + 1,a]. From
this and (5) it follows that the induced subdigraphs D[{x1, %2, ..., Za/2, Y1, Y2, -, Yaj2}]
and D[{Za/241, Taj242; - - - » Tas Yaj2+1: Yaj242: - - - » Yo }) both are balanced bipartite complete
digraphs. Therefore, D contains cycles of all lengths 2,4,...,a. It remains to show
that D also contains cycles of every length a + 2b, b € [1,a/2]. Since D is strong
and (4), it follows that there is an arc from a vertex in {yi,¥a,...,%a/2} to a vertex in
{®aj241: Taj242, - - ., xa}. Without loss of generality, we may assume that 1,/9%q/241 € A(D).
Then 1y122y2 - - - Taj2Ya/2Taj241 Yaj241Taj2+2 - - - Taj21bYa/2+6T1 18 a cycle of length a + 20.
Thus, D contains cycles of all lengths 2,4, ..., 2a. This completes the discussion of Case 1.

Case 2. d(vy) = 0.

Then d*(z1) = 1 and a1y, € A(D), since D is strong. Hence d(x;) < a + 1. Together with
condition A this implies that a < d(z7) < a+ 1. We distinguish two subcases depending on
d(l’l)

Case 2.1. d(z1) = a.

Then d(z;) > 2a for all i € [2,a] because of condition A. Therefore, the induced subdigraph
DY UX\{x}) is a complete bipartite digraph with partite sets Y and X \ {z;}. It is clear
that D contains cycles of every lengths 2,4,...,2a — 2. Since d(z;) = a, d"(z;) = 1 and
a > 3, we have that d~(z1) = a — 1 > 2. Without loss of generality we may assume that
yox1 € A(D). Then yox1y123Y3 - . . ToYaT2ys2 is a cycle of length 2a.

Case 2.2. d(z1) = a+ 1.

Then {y1,9o,...,ya} — o1 because of d*(x1) =1, and, by condition (A), d(z;) > 2a — 1 for
all i € [2,a]. Observe that if for some i € [2,a], y12; € A(D), then M , = {yiz1,y12:} U
{y;z;|j € [1,a] \ {1,i}} is a perfect matching from Y to X in D.

Assume that for some i € [2,a|, ;11 ¢ A(D). Then yy2; € A(D) because of d(x;) >
2a—1. Since z1y1 € A(D), z;y1 ¢ A(D) and z1y; ¢ A(D), it follows that s(M; ) > s(M,,),
which contradicts the choice of M, ,. We may therefore assume that {2, z3,..., 2.} — y1. If
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yi1z; € A(D) and z;y; € A(D), where i € [2,a], then again we have s(M; ) > s(%,z), since
the arcs z1y1, z;y; are in D and x1y; ¢ A(D). We may therefore assume that a [y1, z;] +
7[@,%] < 1. This together with d(z;) > 2a — 1, i € [2,a], implies that

{y27y3>~"7ya} — Xy — {y2>y37--~7ya}\{yi}' (6>

Since D is strong and d* (x1, {y2, y3, .. ., Ya}) = 0, it follows that d* (y1, {wa, x3,...,2.}) > 1.
Without loss of generality, we assume that y,22 € A(D). Then, since yoz1 € A(D) and (6),
T1Y1T2Y3T3 . . . T 1YpTrYoTy is a cycle of length 2k for every k € [3,a]. Lemma 6 is proved.

a

Lemma 7: Let D be a strong balanced bipartite digraph of order 2a > 6 with partite sets X
and Y. Let M, , = {y,x; € A(D)|i=1,2,...,a} be a perfect matching fromY to X in D
such that the size s(M, ) of M, ., is maximum among the sizes of all the perfect matching
fromY to X in D. If D satisfies condition (A), then either d(u) + d(v) > 2a — 1 for every
pair of non-adjacent vertices u, v in D*[M, .| or D contains cycles of all lengths 2,4, ..., 2a.

Proof: Suppose that D is not even pancyclic. Then by Lemma 6, D*[M, ] is strong. Let
v; and v; be two arbitrary distinct vertices in D*[M,, ,]. Write

9(i, j) = d* () +d* (w;) +d” (y;) +d"(y;) and f(i, ) == d~ () +d~ (z5) + d* (i) +d* ().
By Lemma 3(i), we have
d(v;) + d(v)) = g(i, j) = 27 [ws, 5] — 27 [, ;]. (7)
By condition (A), we have
6a < d(x;) + d(z;) + d(y:) + d(y;) = f(i,5) + 9(i. ).

Hence,
9(i,j) = 2a and da > f(i,j) = 6a — g(i, j). (8)

since the semi-degrees of every vertex of D are bounded above by a. Now we prove the
following claim.

Claim 1: Assume that the vertices v; and vj in D*[M, ;| are not adjacent. Then the following
hold:

(i). If ziy; € A(D) or z;y; € A(D), then @ [y;, x,] + @ [y;, v < 1.

(ii). If x;y; ¢ A(D) or z;y; ¢ A(D), then d(v;) + d(vj) > 2a — 1 in D*[M, ]

Proof: Since the vertices v; and v; in D*[M,, .| are not adjacent, it follows that x;y, ¢ A(D)
and z;y; ¢ A(D).

(i). Suppose, to the contrary, that z;y;, € A(D) or z;y; € A(D), but a[y;, z;] +
@ [y;,z:] = 2. Then M, = {yirj, vy U{yerr | k € [1,a]\{i,7}} is a new perfect matching
from Y to X in D. Since z,y; ¢ A(D), x;y; ¢ A(D) and z;y; € A(D) or x;y;, € A(D), it
follows that s(M, ,) > s(M, ), which contradicts the choice of M, .

(il). If @[z, ] = @[z;y;] = 0, then from (7) and g¢(i,j) > 2a it follows that
d(v;) + d(v;) > 2a in D*[M, ,]. We may therefore assume that z;y; € A(D). Then z;y; ¢
A(D) by the assumption of Claim 1(ii). If g(¢, j) > 2a+1, then, by (7), d(v;)+d(v;) > 2a—1.

@
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Thus, we may assume that ¢(7,j) = 2a. Then f(i,j) > 4a by (8). The last inequality implies
that the arcs y;z;, y;x; are in D. Therefore, M, , := {y;v;, y;2:} U{yprr | k € [1,a]\ {7, j}} is
a new perfect matching from Y to X in D. Since z;y; € A(D), x;y; ¢ A(D) and x;y; ¢ A(D),
it follows that s(Mj ) > s(M, ), which contradicts the choice of M, .. The claim is proved.

O

We now return to the proof of Lemma 7. Suppose that there exist two distinct non-
adjacent vertices, say v; and vy, in D*[M,, .| such that

d(vy) + d(vg) < 2a — 2. 9)

This together with (7), @[z1,71] < 1 and @[xs, 7] < 1 implies that ¢(1,2) < 2a + 2.
Therefore, 2a < ¢g(1,2) < 2a + 2.

Case 1. @[x1,1] = 0.

Then from (7), (9) and the fact that g(1,2) > 2a, it follows that @[zs, 5] = 1 (ie.,
Toys € A(D)) and ¢(1,2) = 2a. From this and (8) it follows that f(1,2) > 4a, which in
turn implies that y;zo € A(D) and yoz1 € A(D). The aforementioned contradicts Claim
1(i) since zoy2 € A(D).

Case 2. @[z1,51] = @[22,5] = 1, i.e., 21y € A(D) and x5y € A(D).

From Claim 1(i) it follows that y;2o ¢ A(D) or yoxy ¢ A(D). If 2a < ¢(1,2) < 2a + 1,
then from (8) it follows that f(1,2) > 4a — 1, which in turn implies that y;22 € A(D) and
yox1 € A(D), which is a contradiction. We may therefore assume that ¢g(1,2) = 2a+2. This
and (8) imply that f(1,2) > 4a—2. Then, since y1z2 ¢ A(D) or yox; ¢ A(D), it follows that
y1xe € A(D) or yox; € A(D). Without loss of generality, we may assume that 25 ¢ A(D)
and yox1 € A(D). Note that the vertices y; and x9 are not adjacent. Then f(1,2) = 4a — 2,
which in turn implies that d~(z1) = d*(y2) =a and d~(z3) = d"(y1) = a — 1. Therefore,

Yo — {1'1,1'2, <. 7xa}; {yla Yo, ... 7ya} — T1; Y1 — {$1,l’3, VDI 71'11};
{927937---7%} — Ta. (10)
since y1x2 ¢ A(D). Using (10), it is easy to see that for all i € [3, a],
M, = {yor1, yia, i} U {ynae | k € [3,a] \ {i}}

is a perfect matching from Y to X in D. Using the facts that the arcs x1y,, x2ys are in D, it
is not difficult to see that if for some i € [3, al, either xoy; ¢ A(D) or x;y1 ¢ A(D) or x;y; €
A(D), then s(M; ) > s(M,,), which contradicts the choice of M, ,. We may therefore as-
sume that z;y; ¢ A(D) for all i € [3,a], and z3 — {y2,y3,..., %} and {3, 24,...,2,} —
y1. Together with (10) they imply that

To <7 {3/27y37-~~73/a} and Y1 < {'r17x37x47"'7xa}' (11)
Since the vertices y;, x2 are not adjacent, from (11) and Lemma 3(i) it follows that
d (y) =d (x)=a—1, d (v))=d"(vg) =a—2. (12)

From ¢(1,2) = 2a+ 2, (7), z1y1 € A(D) and 2y, € A(D) it follows that d(v1) + d(vy) =
g(1,2) —4 = 2a—2. This together with (12) and the fact that D*[M, ] is strong implies that
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d*(v1) = d”(v9) = 1. This means that d* (1) = d™ (y2) = 2. Therefore, d(x1) = d(y2) = a+2
by (10).

Now for every i € [3,a] we consider the perfect matching M;w and its corresponding
digraph D*[M ]. Notice that s(M, ) = s(M, ,) = a—2, the vertices y;, 25 are not adjacent
and the arcs z;y;, 1y are not in A(D). Hence, the vertices vi = {y1, z;}, v = {y;, 2o} in
D*[M, ] are not adjacent. From Claim 1(ii) it follows that in D*[M; ] the degree sum
of every pair of two distinct non-adjacent vertices, other than {vi v}, is at least 2a — 1.
If in D*[M; ], d(v}) 4+ d(v5) < 2a — 2, then by the arguments to that in the proof of
d(x1) = d(y2) = a + 2, we deduce that d(x;) = d(y;) = a + 2 for all i € [3,a]. Therefore, for
all i € [3,al, 3a < d(zy) + d(x;) < 2a+ 4. This means that a < 4, i.e., a =3 or a = 4.

Let a = 3. By Lemma 5, it suffices to show that D contains a cycle of length 6. Using
(10) and (11), it is easy to check that x3ysxoysz1y123 is a cycle of length 6 in D.

Let now a = 4. By Lemma 5, we need to show that D contains cycles of lengths 6 and
8. From d(z4) = 6 and x4yy ¢ A(D) it follows that x4y, € A(D) or z4y; € A(D).

Assume that x3y, € A(D). Then using (10) and (11) it is not difficult to see that
T3YsToYo1y1 23 is a cycle of length 6, and x3ysxsyaxoysz1y123 (respectively, 3ysTaysTays
x1y173) is a cycle of length 8, when x4y, € A(D) (respectively, when z4ys3 € A(D)).

Assume now that x3y, ¢ A(D). Then from x4y, ¢ A(D) and d(ys) = 6 it follows
that =7y, € A(D). Now again using (10) and (11), we see that xjysxsysxsyizy is a cycle
of length 6, and z1y4x4yexoyssy1x1 (respectively, z1ysx4ysT2y2x3y121) is a cycle length 8,
when x4y € A(D) (respectively, when z4y3 € A(D)). Thus, we have shown that if a = 3 or
a = 4, then D contains cycles of all lengths 2,4, ...,2a, which contradicts our supposition
that D is not even pancyclic. This completes the proof of Lemma 7. 4

We now ready to complete the proof of Theorem 10.

Proof of Theorem 10: Let D be a digraph satisfying the conditions of Theorem 10. By
Lemma 5, D contains cycles of lengths 2 and 4. By Lemma 2, D contains a perfect matching
from Y to X. Let M, , = {y;x; € A(D)|i=1,2,...,a} be a perfect matching from Y to X in
D with the maximum size among the sizes of all the perfect matching from Y to X in D. By
Lemma 6, the digraph D*[M,, ,] either contains cycles of all lengths 2,4, ..., 2a or is strongly
connected. In the former case we are done. Assume that D*[M, ,] is strongly connected.
By Lemma 7, D either contains cycles of all lengths 2,4, ...,2a or (ii) d(u) + d(v) > 2a — 1
for every pair of non-adjacent vertices w, v in D*[M, ,|. Assume that the second case holds.
Therefore, by Theorem 12, either (a) D*[M, ] contains cycles of every length k, k € [3, d]
or (b) a is even and D*[M, | is isomorphic to one of digraphs K5 , 0, K35, \ {€} or (c)
D*[M, .| € 7, where (a +1)/2 <m < a— 1.

(a). In this case, by Lemma 5 and Lemma 3(ii), D contains cycles of every length 2k,
ke [1,al.

(b). D*[M,,] is isomorphic to K5, or Kj 5 .o\ {€} with partite sets {v,vs,.. .,
Vg2} and {Vaj241,Va/24+2,---,Va}. Notice that @ > 4 and D*[M, ,] contains cycles of every
length 2k, k € [1,a/2]. Therefore, by Lemma 3(ii), D contains cycles of every length 4k,
k € [1,a/2]. It remains to show that for any k& € [1,a/2 — 1], D also contains a cycle of
length 4k + 2.

We claim that there exist p € [1,a/2] and ¢ € [a/2+1, a] such that y,z, € A(D). Assume
that this is not the case, i.e., there is no arc from a vertex of {y1,%2,...,%a/2} to a vertex
of {Za/211, Tas212,ldots, x,}. Then, since D*[M, ] is isomorphic to Ky, o8 K/ 0\ {€},



22 A Theorem on Even Pancyclic Bipartite Digraphs

from the definition of D*[M,,] it follows that d* (y1) < a/2, d* (ya2) < a/2,d" (1) < a/2+1
and d~ (Ya/2) < a/2+41. Combining these inequalities, we obtain that d(y1)+d(ya/2) < 2a+2,
which contradicts condition (A) since a > 4.

It suffices to consider the case when D*[M,,] is isomorphic to K, \ {€}. Without
loss of generality, we may assume that e = v,v,/2. From the definition of D*[M, ] it
follows that {z1,22,...,%a/2} — {Ya/241,Yaj242,---,Ya} and D contains all possible arcs
from {Za/241, Taj212: - - Ta} 10 {Y1, Y25 - - Yas2} €XCEDPt Tl /2

If p=a/2and g=a (ie, Ya/2%a € A(D)), then Y121Ya/2+1Ta/2+1Y222Ya/24+2Ta/2+42 - - -
YkTrYaj2+k Ta/2+kYaj2Tat 15 a cycle of length 4k + 2, where k € [1,a/2 — 1]. Thus, we may
assume that y,/02, ¢ A(D). Then the vertices x,, yo/2 are not adjacent since z,y,/2 ¢ A(D).
This together with d™(ya/2, {®1,22,...,242}) < 1 implies that d(ye2) < 3a/2 — 1.
Therefore, by condition (A), d(ys2-1) > 3a/2 + 1 and hence, Y212, € A(D) since
d™ (Yaj2—-1, {21, T2, ..., q2}) < 1. Now it is not difficult to check that if a > 6, then
Y121Ya/2+1%a/24+1Y2%2Yaj2+2%aj2+2 - - - YkTkYa/24+kTa/2+kYa/2—1TaY1 18 a cycle of length 4k + 2
when k € [1,a/2 — 2|, and $121Ya/241%a/241Y2%2 Ya/242Taj242 - - - Ta/2—2Ya—2%a—2Ya/2Ta/2
Ya—1Ta—1Ya/2—1 Taly1 18 a cycle of length 2a — 2. If a = 4, then yoxoy474y123y2 is a cycle of
length 6 = 2a — 2.

(c). D*[M, ] € ®7. Since D contains cycles of lengths 2, 4 (Lemma 5) and every digraph
in @7 is Hamiltonian, we can assume that a > 4. Let V(D*[M,,]) = {vi,v2,...,v,} and
UqUq—1 - - - V2017, be a Hamiltonian cycle in D*[M,, ,]. Therefore, by the definition of D*[M,, ,],
for all i € [2,d], ;i1 € A(D) and z1y, € A(D). From the definition of & we have
dt(v,) = 1 and d*(v,—1) < 2. This means that d*(z,) < 2 and d*(z,—1) < 3. These
together with d™ (z,) < a, d” (z,—1) < a and condition (A) implies that

d(z,) <a+2, d(z,q1)<a+3 and 3a <d(z,)+ d(x,1) <2a+5. (13)

The last inequality of (13) implies that a < 5, i.e., a =4 or a = 5.

Let a = 5. Then from (13) it follows that d(x,) + d(z,—1) = 2a + 5, d”(z,) =
d=(xe—1) = a, i.e, {y1,%2, .-, Yo} — {%a,Ta—1}. Therefore, yoxsysz4ysrsys (respectively,
Y1T5YsT4Y3T3Ya T2y ) 18 a cycle of length 6 (respectively, of length 8).

Let @ = 4. In this case, we need to show that D contains a cycle of length 6. If
r1ys € A(D) (or yox; € A(D)), then xiysxsysxoyizy (respectively, z1ysT4y3r3ysxy) is a
cycle of length 6. We may therefore assume that z1y3 ¢ A(D) and yexy ¢ A(D). Then
d(zy1) = d(z4) = 6 since d(x4) < a + 2, d"(x,) < 2 and d(z1) + d(z4) > 12. Therefore,
d~(z4) = 4, which in turn implies that y,24 € A(D). Hence, yix4ysx3y2x2y; is a cycle of
length 6. Thus, we have shown that if D*[M, ;] € ®*, then a =4 or a = 5 and D contains
cycles of all lengths 2,4, ...,2a. This completes the proof of the theorem.

5.  Conclusion

In the current article, we prove a Meyniel-type condition and a Bang-Jensen, Gutin and
Li-type condition for a strong balanced bipartite digraph of order 2a > 6 to have cycles of
all even lengths less than equal to 2a.

It is worth to noting that over the past three years, various authors have received a
number of sufficient conditions for the existence of cycles with certain properties in bipartite
digraphs. In particular, several sufficient conditions for a balanced bipartite digraph to be
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Hamiltonian or be even pancyclic were obtained (see, e.g., [23] by Wang and Wu, [24] by
Adamus, [25] by Wang, [26] by Wang et al.).

A Hamiltonian path in a digraph D in which the initial vertex dominates the terminal
vertex is called a Hamiltonian bypass in D. It was proved that a number of sufficient condi-
tions for a digraph to be Hamiltonian is also sufficient for a digraph to contain a Hamiltonian
bypass with some exceptions, which are characterized in [27], and the papers cited there.
It is not difficult to show that, if a balanced bipartite digraph of order 2a > 4 satisfies the
conditions of Theorem 2(a) (or 2(b)), then D has a Hamiltonian bypass. In this regard, we
believe that the the following conjecture is true.

Conjecture 3: D be a strong balanced bipartite digraph of order 2a > 6. If D satisfies the
conditions one of Theorems 2, 5 and 7, then D contains a Hamiltonian bypass, with some
exceptions.

To conclude this section, we mention that Wang et al. [28] constructed an infinite family
of counterexamples to Conjecture 2. Note that each of these counterexamples contains a
vertex, which has degree equal to three.

Thus, Conjecture 2 remains open for digraphs with the minimum degree is at least four
and for k-strong digraphs, where k > 2.
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