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Abstract

In this work, we present methods for voice emotion classification using deep learning
techniques. To processing audio signals, our method leverages spectral features of voice
recordings, which are known to serve as powerful representations of temporal signals.
To tackling the classification task, we consider two approaches to processing spectral
features: as temporal signals and as spatial /2D signals. For each processing method, we
use different neural network architectures that fit the approach. Classification results
are analyzed and insights are presented.
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1. Introduction

The problem that is addressed in this work is the emotion classification from voice record-
ing. Formally, given some representation X of voice recording data and a set of n emotion
labels/classes {y1,¥2, ..., Yn}, the aim is to come up with a classifier F'(X) = y; that maps
X to alabel y; € {y1,...,yn}. Practically, having such a classifier F' can have a wide range
of applications, such as recommendation systems of movies or music driven by users’ mood,
systems for tracking the emotional state and satisfaction of clients through time, security
systems for preventing harmful actions based on emotion, and so on.

Previous attempts to tackle the voice emotion classification problem include SVM-based
algorithms of classifying voice into 5 categories - angry, happy, neutral, sad, or excited [1],
which also considers the facial expression of the speaker during speech as an additional signal.
Gliige et al. [2] propose a Deep Neural Network Extreme Learning method with efficient
performance on small datasets. Eskimez et al. [3] tackle the speech emotion recognition
problem through an unsupervised approach, by which they come up with meaningful speech
representations by learning the underlying structure of the data, which aids in solving the
main task. Bertero et al. [4] introduce a Convolutional Neural Network (CNN)-based ap-
proach of 3-label (“angry”, “happy”, “sad”) emotion recognition of speech, where they use
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the standard pulse-code modulation (PCM) temporal representation of the audio signal as
input. Mirsamadi et al. [5] propose a 4-label (“angry”, “happy”, “sad”, “neutral”) speech
emotion recognition model based on Long Short Term Memory Network (LSTM) architecture
and local attention, and base their model on Mel-Frequency Cepstral Coefficients (MFCC),
Fast Fourier Transform (FFT), fundamental frequency and zero-crossing rate features of the
audio. In our setups, we experiment with both CNN-based and LSTM-based architectures
and consider 8 emotional labels for classification, which are described in Section 2.

In this paper, we use cepstral features as representations of voice data, particularly, we
utilize Mel-Frequency Cepstral Coefficients (MFCC) for representing the audio signal. We
experiment with two views for processing MFCCs: processing them as sequential data in
the time domain, and processing them as spatial data. For each of the approaches, we use
the appropriate neural network architecture. Specifically, for processing MFCCs as temporal
data, we utilize Long Short Term Memory Networks (LSTM), and for processing MFCC as
spatial/2D data, we make use of Convolutional Neural Networks (CNN).

2. Datasets

In our setup, we consider 8 emotion labels for classification. The databases used in the paper
are as follows: Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS)
(6], Surrey Audio-Visual Expressed Emotion (SAVEE) [7] and Toronto Emotional Speech
Set (TESS) [8]. Each item in the datasets is a recording of an actor that pronounces some
statement with a certain expressed emotion. Voice recordings in the databases come in a .wav
format, which describes the amplitude of air pressure oscillations in the temporal domain.
Each voice recording has an emotion label attached to it. The RAVDESS database has 24
actors that pronounce 2 phrases: “Kids are talking by the door“ and “Dogs are sitting by the
door” with 2 intensities: Normal and High each repeated twice. Neutral emotion has no high
intensity so it is only repeated twice. The emotion labels are: “neutral”, “calm”, “happy”,
“sad”, “angry”, “fearful”, “disgust”, “surprised”. TESS dataset has 2 actors, young and old,
and both of them are female. There are 2800 voices in total with each phrase being of the
form “Say the word x, where x stands for some word. Recordings in the TESS dataset have
the same labeled emotions as in RAVDESS, except for the calm label, which is absent in this
dataset. SAVEE dataset has 4 English male actors with 480 voice recordings. 7 emotions are
present, with the calm emotion missing. In total, there are 4720 samples. The distribution
of samples and classes is summarised in Table 1 and in Table 2.

Table 1: Summary of datasets used.

Database | Num of Recordings | Num of Actors | Emotion Labels
RAVDESS 1440 24 8
SAVEE 480 4 7
TESS 2880 2 7
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Table 2: Number of voice recordings per emotion label across all databases.

Neutral | Calm | Sad | Fear | Anger | Surprises | Happiness | Disgust
616 192 | 652 | 652 652 652 652 652

3. Method

3.1 Feature Extraction

To extract audio features from voice recordings, we use librosa library for python [9]. It
handles most of the transformations done to voice recordings to get final features used for
classification. The first step before extracting features is to resample voice recording files to
obtain their time domain and amplitude representation. Voice recordings from our databases
have different original sampling rates, which range from 22Khz to 48Khz. However, the
content that we are trying to analyze from those recordings are the human voices themselves.
Normally, the human voice ranges from low range frequencies 300Hz to higher ranges of 4 -
10Khz. This means that we can use lower sampling rates to resample our voice recording. We
chose 22.05Khz sampling rate, which preserves all human voices in original audio recordings
and also preserves some possible frequency deviations from the normal range, which can be
caused by pronouncing high-frequency tones, e.g. fricatives. The result is a floating-point
time series describing the amplitude of air pressure oscillations from a mean frequency of 0
at each time point. Thus, we obtain a time-domain representation of the signal. An example
is illustrated below in Fig. 1.
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Fig. 1. Sample waveform representation of a voice recording signal.

Having the temporal signal representation of the voice signal, we then process it to obtain
its spectral features, which serves as the main data representation for our models.
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3.2 Spectral Features Extraction

Conceptually, given a temporal signal z(t), we can represent it as a combination of periodic
functions of varying frequencies [10]:

= / X (w)e? dw,

where w is the frequency of the corresponding periodic function. Thus, having the coefhi-
cients X (w) is equivalent to having the original signal x(¢), and we can use these coefficients
as a representation of the temporal signal in the frequency space. To achieving such a rep-
resentation, the Fourier Transform operation is used [10]. Since we are dealing with discrete
data, the equivalent operation used is Discrete Fourier Transform (DFT), which converts
discrete temporal signal x[n] of length K to a representation of this signal in frequency
space by obtaining the coefficients / intensities X [k] for each frequency k [11]:

K
X[k =" anle ™ /N, 1 <k < K.
n=1

In signal processing, frequency decomposition is often performed by dividing the signals
into time intervals of specified window size and performing DFT on each windowed signal,
thus coming up with frequency components in multiple time intervals. Such representation
of a signal is called the Short-Time Fourier Transform (STFT) of a signal [10].

For audio signals, in some cases, more sophisticated representations of the signal based on
STFT are necessary for higher efficiency. Mel-frequency cepstral coefficients, a.k.a. MFCCs,
are features, which represent a given signal by cepstral energy coefficients at specific short
intervals of time. The advantage of MFCC features is that they represent the signal in a
way that is close to the signal perception by the human ear, which, is intuitively achieved by
applying smaller window-sized cepstral filters on low frequencies on a signal and increasing
the window size of the filters as the considered frequency increases. The reason behind such
intuition is that the human ear perceives frequencies in lower ranges much better than in
higher ones. Hence, higher resolution at lower ranged frequencies is used while computing
MFCCs [12].

In its final form, the MFCC of a signal can be represented simply as a function P;(k),
where the outputted value is the intensity of k-th cepstral coefficient in ¢-th temporal frame
index.

An example of an extracted MFCC feature is demonstrated in Fig. 2
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Fig. 2. Sample MFCC representation of a voice recording signal.
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3.3  Architectures and Results
3.3.1 Long Short Term Memory Networks (LSTMs)

Considering the temporal nature of the data in hand, i.e., the voice recordings that are rep-
resented as magnitudes of air pressure (amplitude) across time, and the computed MFCC’s
that are a time series of energy coefficient values, it is sensible to use architectures that are
by design intended for processing sequential data and have the appropriate inductive bias.
One example of such architectures are Long Short Term Memory Networks (LSTM) [13],
which are a variant of Recursive Neural Networks (RNN). The main idea behind LSTM
is the usage of feedback connections for preventing the vanishing gradient problem. The

architecture of LSTM used is summarized in Fig. 3.
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Fig. 3. The architecture of the trained LSTM model.
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Fig. 4. ROC curves of the trained LSTM model. Each curve corresponds to an emotion label.
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MFCC sequences are fed into an LSTM recurrent layer with a hidden dimension of size
1024. There are 2 LSTM layers stacked on top of each other, meaning that the outputs
of the first layer are processed by the second one. This increases the perceptiveness of the
network towards the features present in the sequence. Due to the dataset being small, we
used dropout with high probability (p = 0.5) on the outputs of the first LSTM unit to prevent
overfitting. The output of the last LSTM layer is then passed to a Multilayer perceptron
(MLP), which outputs an 8-dimensional vector representing the logits of each emotion label.

The network was trained using only the RAVDESS dataset. The recordings of the 1st and
2nd actors (one male and one female) were used as a testing set, the rest of the recordings
were used for training the network. Adam optimizer with learning rate of 0.0005 was used
and the loss function to minimize was cross entropy loss given by:

L(5:) = log (’W) |

Zj exp (?jj)
L(y;) = — Zyil (i) ,

where {g;} are the estimated class labels, and {y;} are the ground-truth labels.

The classification results and comparison to the existing relevant method are demon-
strated in Table 3. The Receiver Operating Characteristic curves (ROC curves) of the
results are shown in Fig. 4.

3.3.2 Convolutional Neural Networks (CNNs)

As stated in subsection 3.2, the MFCC of a recording can be observed as a 2D feature
map of a signal, with one dimension being the temporal dimension and the other being
the cepstral coefficient dimension. Thus, a possible approach to working with MFCC’s is
processing them as spatial signals. Convolutional Neural Networks (CNN) are one of the
most prominent architectures used for processing spatial data due to their shift equivariance,
their inductive bias in searching for local patterns, and many other inherent benefits.

Thus, we consider solving the voice emotion classification task by training a CNN on
extracted MFCC data. For MFCC calculation, the window size of 4096 and the overlap of
between subsequent windows were chosen. Decreasing the window size by half degrades the
performance of the network. On average, these settings produced better results. 4096 for a
window size is good because it allows computing the FFT of length 4096 on that window to
capture frequency spectrum of up to 4Khz. This means that the majority of human speech
in those recordings is captured in each window. After calculating MFCCs for every recording
and padding sequences with less length than the longest sequence, we obtain input matrices
to our network of size (40 x 160) where at each sequence point we have 40 MFCCs.

The architecture of the CNN used is depicted in Fig. 5, and the method is summarized
as follows:

There are 3 convolutional layers in the network followed by average pooling layers of size
(2x2). The last layer is a fully connected layer that maps output of convolutional layers to
an 8 length vector. Log softmax activation is applied to use cross entropy loss. Each layer
has 32 kernels of parameters. The first layer has kernels of size (10x3), and it is deliberately
chosen to be narrow and heighty to capture features from change of MFCCs through the
sequence. Between layers, leaky rectified linear unit (ReL.U) activation function given as
h(x)=max(x, 0)+0.01*min(0, x)is used both to enable fast training and to prevent neurons
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from dying. Leaky ReLU adds a small slope to non activated neurons thus preventing
them from becoming 0 and not contributing to backpropagation in later epochs [14]. Since
our dataset is very small, we used dropout with high probability (p = 0.5) as well as L2
regularization to prevent overfitting, which penalizes the sum of squares of the weights of
the model.
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Fig. 5. The architecture of the trained CNN model.

All recordings of the 1st and 2nd actors, one male and one female from the RAVDESS
database were used for testing, which the neural network was not trained on. All remaining
recordings were used for training. We used Adam optimizer with a learning rate of 0.00005
and L2 regularization with decay of 1074, The final loss function becomes:

[(gi) = log (eXp(y)> :

Zj exp (ij>
L(y;) =— Zyil (7:) + A Z w?,
i weW
where W is the set of all trainable weights of the CNN.
The classification results and comparison to the existing related method are summarized

in Table 3. Average ROC Area Under Curve (AUC) for all classes was 0.927. ROC curves
for all classes are demonstrated in Fig. 6.

Table 3: Classification results.

Architecture | Train Test Mirsamadi et al. [5] | Bertero et al. [4]
Accuracy | Accuracy Test Accuracy Test Accuracy
LSTM 93.58% 65% 63.5% -
CNN 96% 67.5% - 66.1%

As it can be observed, the network captures some emotions more easily than others. For
instance, Neutral, Calm, Angry and Surprise were captured better than the rest. ROC-AUC
metric also suggests that the model learned meaningful representations for the task.
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Fig. 6. ROC curves of the trained CNN model. Each curve corresponds to an emotion label.

Overall, the results show that the models managed to learn meaningful representations
from the training procedure. In Table 3, we compare our results to the LSTM-based method
of Mirsamadi et al. [5], which was trained and tested on the IEMOCAP benchmark [16]
with a 4-label (“angry”, “happy”, “sad”, “neutral”) classification setting, as well as to the
CNN-based method of Bertero et al. [4], which was trained and tested on the TED-LIUM
benchmark [15] with a 3-label (“angry”, “happy”, “sad”) classification setting. As it can be
observed, our method gains superior results on our 8-label classification setting. In contrast
to the 2 methods, we leverage only the MFCC representation of the signal, which highlights
the efficiency of the MFCC representation and its usage with deep learning methods for the
task.

4. Discussion and Conclusion

This paper proposes deep learning approaches for the voice emotion classification problem.
Particularly, CNN and LSTM architectures were trained on MFCC features of voice record-
ings, depending on processing MFCCs either as a spatial signal or as a sequential signal. The
results indicate that the networks have learned meaningful representations from the training
data. A possible future direction for improving the classification performance of the pro-
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posed models could be adding augmentations to the audio data. The recent advancements in
using transformers [17] for multi-modal representation learning [18] and the expressiveness of
the resulting feature space can also be a promising direction for solving the speech emotion
recognition task.
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duwdwlwlwjhl wqnub)wGGtiph wpyniGuwybm Gipluwjwgdwdp: Fwuwyupqiwl fulnhpp
motim hwdiwp hnpjuwontd hwpyh G6 wnGymd hwdwpwwl hwnlw6h)Giph Qyuljdwl
tpynt Unnbignd” nputiv dwdwlwlwihG wqnub)uwGiaph Yywldwl dnntignd L nputu
nwpwowjul wgqnuGuGitnph Wuwlyiwli dnntignd: 3mpuwpwlynip dnnbgdwl hwdiwnp
Uhpwnynd GG hwiwwwunwujuwl wphbunmwuwlG guGgtph dnnbGhp: “Ltpuyjuwgymad k
nuuwlwpqiwl wpryniGpGtph yapnionmp nil, juunwpymd GG Ggpujugmp niGGtp:
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AnHoTanus

B oTO¥ cTaThe MBI MPEACTaBASEM METOABI KAACCU(UKAIUU 3MOIMH B TOAOCE C
HCIIOAB30BaHUEM METOAOB TAYOOKOTO OOy4ueHUs. AAsi 0OpabOTKU ayAMOCHUTHAAOB,
AQHHBIM METOA WCIOAB3yeT YaCTOTHBIE IIPU3HAKM W3BAEYEHHBIE W3 TOAOCOBBIX
3amucey, KOTOPbIe, KaK W3BECTHO, CAY>KaT MOIIHBIM ITPEACTaBAEHUEM BpPEeMeHHBIX
CUTHAAOB. AAS pellieHus 3aAaUy KAACCU(UKAIIAN, B AQHHOM paboTe pacCMaTPUBAIOTCS
ABa TIOAXOAA OOPAOOTKM YaCTOTHBIX MPU3HAKOB: KaK BPeMeHHBIe CUTHAABI U KakK
IpOCTpaHCTBeHHbIe/2D-cUrHaAbl.  AASI Ka*KAOTO M3 TOAXOAOB MBI HMCIIOAB3yeM
TTOAXOASIIIVIE aPXUTEKTYPHI HEMPOHHBIX CeTel. BhIAM MpOoaHAAM3UPOBAHBI PE3YABTATEI
KAACCU(PUKAIINYA U TPEACTABAEHBI BHIBOAHL.

KaroueBhIe CAOBa: OIpepereHre HACTPOeHWs II0 TOAOCY, pacho3HaBaHUE
HaCTPOEHUsI, KAACCU(PUKATIMU SMOIIUN B TOAOCE, YaCTOTHBIE TTPU3HAKU.
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