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Abstract

R. Wang (Discrete Mathematics and Theoretical Computer Science, vol. 19(3),
2017) proposed the following problem.

Problem. Let D be a strongly connected balanced bipartite directed graph of
order 2a > 8. Suppose that d(z) > 2a—k, d(y) > a+kord(y) >2a—k,d(z) > a+k
for every pair of vertices {z,y} with a common out-neighbour, where 2 < k < a/2. Is
D Hamiltonian?

In this paper, we prove that if a digraph D satisfies the conditions of this problem,
then

(i) D contains a cycle factor,

(ii) for every vertex x € V(D) there exists a vertex y € V(D) such that x and y
have a common out-neighbour.

Keywords: Digraph, cycle, Hamiltonian cycle, Bipartite balanced digraph, Perfect
matching.

1. Introduction

In this paper, we consider finite directed graphs (digraphs) without loops and multiple arcs.
A digraph D is called Hamiltonian if it contains a Hamiltonian cycle, i.e., a cycle that includes
every vertex of D. The vertex set and the arc set of a digraph D are denoted by V(D) and
A(D), respectively. The order of a digraph D is the number of its vertices. A cycle factor in D
is a collection of vertex-disjoint cycles Cy, Cs, ..., C) such that V(Cy) UV (Cy)U... UV (C)) =
V(D). A digraph D is bipartite if there exists a partition X, Y of V(D) into two partite sets
such that every arc of D has its end-vertices in different partite sets. It is called balanced if
x| = Y.

There are a number of conditions that guarantee that a bipartite digraph is Hamiltonian
(see, e.g., [1]-[11]). Let us recall the following degree conditions that guarantee that a bal-
anced bipartite digraph is Hamiltonian.

Theorem 1.1. ( Adamus, Adamus and Yeo [8]) Let D be a balanced bipartite digraph of
order 2a, where a > 2. Then D is Hamiltonian provided one of the following holds:
(a) d(u) + d(v) > 3a+ 1 for every pair of non-adjacent distinct vertices u and v of D;
(b) D is strongly connected and d(u) + d(v) > 3a for every pair of non-adjacent distinct
vertices u and v of D;
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(c) the minimal degree of D is at least (3a + 1)/2;
(d) D is strongly connected, and the minimal degree of D is at least 3a/2.

Observe that Theorem 1.1 imposes a degree condition on all pairs of non-adjacent vertices.
In the following theorems a degree condition requires only for some pairs of non-adjacent
vertices.

Theorem 1.2. (J. Adamus [9]) Let D be a strongly connected balanced bipartite digraph of
order2a > 6. Ifd(z)+d(y) > 3a for every pair of vertices x, y with a common out-neighbour
or a common in-neighbour, then D is Hamiltonian.

Notice that Theorem 1.2 improves Theorem 1.1.

Some sufficient conditions for the existence of Hamiltonian cycles in a bipartite tourna-
ment are described in the survey paper [3] by Gutin. A characterization for hamiltonicity
for semicomplete bipartite digraphs was obtained independently by Gutin [2] and Haggkvist
and Manoussakis [4].

Theorem 1.3. (Wang [10]) Let D be a strongly connected balanced bipartite digraph of
order 2a, where a > 1. Suppose that, for every pair of vertices {x,y} with a common out-
neighbour, either d(x) > 2a —1 and d(y) > a+1 ord(y) > 2a — 1 and d(z) > a+ 1. Then
D s Hamiltonian.

Before stating the next theorem we need to define a balanced bipartite digraph of order
eight.

Example 1. Let D(8) be a bipartite digraph with partite sets X = {zg,z1, 22,23} and
Y = {v0, 1,92, y3}, and the arc set A(D(8)) contains exactly the following arcs: yoz1, y12o,
T9ys, T3y and all the arcs of the following 2-cycles: z; < y;, i € [0,3], yo < 2, yo < w3,
Y1 <> Tp and y; <> x3.

It is easy to see that

d(z9) = d(z3) = d(yo) = d(y1) =7 and d(z) = d(z1) = d(y2) = d(y3) = 3,

and the dominating pairs n D(S) are: {3/073/1}7 {3/073/2}7{3/073/3}7{3/173/2}7 {y17y3}7 {1.071.2}7
{o, 3}, {1, 22}, {71,235} and {xs,23}. Note that every dominating pair satisfies the con-

dition B;. Since zoyoTsy2T2 Y120 is a cycle in D(8), it is not difficult to check that D(8) is
strong.

Observe that D(8) is not Hamiltonian. Indeed, if C'is a Hamiltonian cycle in D(8), then
C would contain the arcs x1y; and xgyy. Therefore, C' would contain the path x,y;z¢yg or
the path xoyoz1y:, which is impossible since N~ (x¢) = N~ (21) = {vo, y1 }

Notice that the digraph D(8) does not satisfy the conditions of Wang’s theorem.

Theorem 1.4. (Darbinyan [11]) Let D be a strongly connected balanced bipartite digraph of
order 2a > 8. Suppose that max{d(x),d(y)} > 2a — 1 for every pair of vertices x, y with a
common out-neighbour. Then D is Hamiltonian unless D is isomorphic to the digraph D(8)
(for definition of D(8), see Example 1).



28 On a Problem of Wang Concerning the Hamiltonicity of Bipartite Digraphs

For a > 4 Theorem 1.4 improves Wang’s theorem.

A digraph D is called pancyclic if it contains cycles of every length k, 3 <k < |[V(D)|. A
balanced bipartite digraph of order 2a is even pancyclic if it contains cycles of every length
2k, 2 <k <a.

There are various sufficient conditions for a digraph (undirected graph) to be Hamilto-
nian, they are also sufficient for the digraph (undirected graph) to be pancyclic.

Recently, the following results were proved.

Theorem 1.5. (Darbinyan [12]) Let D be a strongly connected balanced bipartite digraph of
order 2a > 8 other than a directed cycle of length 2a. If max{d(x),d(y)} > 2a —1 for every
dominating pair of vertices {x,y}, then either D contains cycles of all even lengths less than
or equal to 2a or D is isomorphic to the digraph D(8).

Theorem 1.6. (Meszka [13]) Let D be a balanced bipartite digraph of order 2a > 4 with
partite sets X and Y. If d(x) + d(y) > 3a + 1 for every pair of distinct vertices {x,y} ei-
ther both in X or both in'Y , then D contains cycles of all even lengths less than or equal to 2a.

Theorem 1.7. (Darbinyan [14]) Let D be a strongly connected balanced bipartite digraph
of order 2a > 6 with partite sets X and Y. If d(x) + d(y) > 3a for every pair of distinct
vertices {x,y} either both in X or both in'Y', then D contains cycles of all even lengths less
than or equal to 2a.

Theorem 1.8. (Adamus [15]) Let D be a strongly connected balanced bipartite digraph of
order 2a > 6. If d(x) + d(y) > 3a for every pair of distinct vertices {x,y} with a common
in-neighbour or a common out-neighbour, then D contains cycles of all even lengths less than
or equal to 2a or a directed cycle of length 2a.

Definition 1. Let D be a balanced bipartite digraph of order 2a, where a > 2. For any
integer k > 0, we will say that D satisfies the condition By when

dx) >2a—k,dy) >a+k or dz)>a+k,dy) >2a—k

for any dominating pair of vertices {x,y} in D.

In [10], Wang proposed the following problem.
Problem (Wang [10]). Let D be a strongly connected balanced bipartite digraph of order
2a > 8 satisfying the condition By with 2 < k < a/2. Is D Hamiltonian?

Before stating the next theorems we need to define a digraph of order ten.

Example 2. Let D(10) be a bipartite digraph with partite sets X = {x¢,x1, T2, 23,24}
and Y = {yo, 1,92, Y3, ys} satisfying the following conditions: The induced subdigraph
({x1, 2,3, Y0,y }) is & complete bipartite digraph with partite sets {xy, x5, z3} and {yo, y4};
{1, 29,23} — {Y1,Y2,Y3}; T4 < Ya; To < Yo, 3 <> y1 and z; < y;,1 for all ¢ € [1,3]. D(10)
contains no other arcs.
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It is easy to check that the digraph D(10) is strongly connected and satisfies the condi-
tion By, but the underlying undirected graph of D(10) is not 2-connected, and D(10) has
no cycle of length 8. (It follows from the facts that d(zo) = d(z4) = 2, and x¢ (z4) is on
2-cycle). Since x1y;x3y3T2yoxy is a cycle of length 6, xy < yo and x4 < yy4, it is not difficult
to check that any digraph obtained from D(10) by adding a new arc the one end-vertex of
which is xy or x4 contains a cycle of length eight. Moreover, if to A(D) we add some new
arcs of the type y;z;, where ¢ € [1,3] and j € [1, 3], then we always obtain a digraph, which
does not satisfy the condition By.

Theorem 1.9. ([16], [17]). Let D be a balanced bipartite digraph of order 2a > 10
other than a directed cycle of length 2a. Suppose that D satisfies the condition By, i.e.,
max{d(x),d(y)} > 2a — 2 for every dominating pair of vertices {x,y}. Then D contains
cycles of all lengths 2,4, ...,2a — 2 unless D is isomorphic to the digraph D(10).

Clearly, the existence of a cycle factor is a necessary condition for a digraph to be Hamil-
tonian. In this note we prove the following theorem.

Theorem 1.10. Let D be a strongly connected balanced bipartite digraph of order 2a > 8
satisfying the condition By with 2 <k < a/2. Then D contains a cycle factor.

2. Terminology and Notation

Terminology and notation not described below follow [1]. If zy € A(D), then we say that x
dominates y or y is an out-neighbour of z and z is an in-neighbour of y.

Let x,y be distinct vertices in a digraph D. The pair {z,y} is called dominating if there
is a vertex z in D such that zz € A(D) and yz € A(D). In this case we say that z is a
partner of y and y is a partner of z. If z € V(D) and A = {x} we sometimes will write
x instead of {z}. A — B means that every vertex of A dominates every vertex of B. The
notation = < y denotes that 2y € A(D) and yx € A(D).

Let N*(z), N~ (x) denote the set of out-neighbours, respectively the set of in-neighbours
of a vertex = in a digraph D. If A C V(D), then N*(z,A) = ANN*(z), N (z,A) =
ANN~(x) and N*(A) = UpeaN*t(2), N7 (A) = UzeaN~ (). The out-degree of x is d*(x) =
INt(z)| and d~(z) = |N~(z)| is the in-degree of x. Similarly, d*(z, A) = |[N*(z, A)| and
d~(z,A) = |N~(z,A)|. The degree of the vertex z in D is defined as d(z) = d*(z) + d~(z)
(similarly, d(z, A) = d*(z, A) + d~ (z, A)).

The path (respectively, the cycle) consisting of the distinct vertices 1, xa, ..., 2, ( m >
2) and the arcs x;x;11, ¢ € [1,m — 1] (respectively, z;x;11, @ € [I,m — 1], and z,,x1), is
denoted by x1xy - - - x,, (respectively, xixy - -« x,,21). We say that zix, - - 2, is a path from
x1 to x, or is an (x1, z,,)-path. Given a vertex z of a directed path P or a directed cycle
C, we denote by =T (respectively, by x7) the successor (respectively, the predecessor) of z
(on P or ), and in case of ambiguity, we precise P or C' as a subscript (that is 25 ...).

A digraph D is strongly connected (or, just, strong) if there exists an (z, y)-path in D for
every ordered pair of distinct vertices x,y of D. Two distinct vertices  and y are adjacent
if xy € A(D) or yx € A(D) (or both).

Let H be a non-trivial proper subset of vertices of a digraph D. An (z,y)-path P is an
H-bypass if |V(P)| >3, x #y and V(P)N H = {z,y}.
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Let D be a balanced bipartite digraph with partite sets X and Y. A matching from X to
Y is an independent set of arcs with origin in X and terminus in Y. (A set of arcs with no
common end-vertices is called independent). If D is balanced, one says that such a matching
is perfect if it consists of precisely | X| arcs.
The underlying undirected graph of a digraph D is denoted by UG(D), it contains an edge
xy if xy € A(D) or yz € A(D) (or both).

3. Main Result

Theorem 1.10 is the main result of this paper.

Proof of theorem 1.10. Let D be a digraph satisfying the conditions of the theorem. Ore
n [18] (Section 8.6) has shown that a balanced bipartite digraph D with partite sets X and
Y has a cycle factor if and only if D contains a perfect matching from X to Y and a perfect
matching from Y to X.

Therefore, by the well-known Koning-Hall theorem (see, e.g., [19]) to show that D con-
tains a perfect matching from X to Y, it suffices to show that |[N*(S)| > |S| for every set
SCX. Let SCX. If S| =1or |S| =a, then [NT(S)| > |S| since D is strongly connected.
Assume that 2 < |S| < a — 1. We claim that |[N*(S)| > |S|. Suppose that this is not the
case, i.e., [INT(S)] <|S| =1 < a— 2. From this and strongly connectedness of D it follows
that there are two vertices z,y € S and a vertex z € N*(S) such that {z,y} — 2z, ie,
{z,y} is a dominating pair. Therefore, by condition By, d(z) > 2a — k and d(y) > a + k or
d(xz) > a+k and d(y) > 2a — k. Without loss of generality, we assume that d(z) > 2a — k
and d(y) > a + k. Then

20— k < d(z) < 2IN*(S)| +a— INT(S)| = a+ |[N*(S)].

Therefore, [INT(S)| > a —k and |S| > a—k + 1.

Proposition 1. Let {u,v} be a dominating pair of vertices of D. Then from condition B,
and 2 < k < a/2 it follows that d(u) > a + k and d(vu) > a + k, i.e., if a vertex z has a
partner in D , then d(z) > a + k.

We claim that each vertex in Y\ N (S) has no partner in D. Indeed, let u be an arbitrary
vertex in Y\ N*(S). Since |S| > a — k + 1, we have

diu) <|S|4+2(a—|S|)=2a—|S|<a+ k-1,
which contradicts Proposition 1. This means that u has no partner in D.

Without loss of generality, assume that

S={x1,29,...,7s} and NT(S)={y,v0,.-., Y}

Recall that every vertex y; with t+1 <4 < a has no partner in D. Note that s > t+1,a—s <
a—t—1 and there is no arc from a vertex of {xy,xs, ..., 2z} to a vertex of {ys11, Y2, -, Ya}-
From this and strongly connectedness of D it follows that there is a vertex z;, such that
Y12y, € A(D). Since yi41 has no partner, it follows that d™(x;,, Y \ {#4+1}) = 0. Therefore,
d(z;;) <a+1<a+k—1since k > 2. By Proposition 1, this means that the vertex
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x;, also has no partner. Since D is strongly connected, there is a vertex y;, € Y such
that z;,v;,, € A(D). Then d (yi,,X \ {z:,}) = 0, because of the fact that x;, has no
partner. Therefore, d(y;,) < a + 1 and hence, y;, also has no partner. Continuing this
process, as long as possible, as a result we obtain a path P = y,112;, Y, %4, - - . T;,Y;, or a cycle
C = Ye1Ti, Yir iy - - - Ti,Yey1- 1t s not difficult to see that all the vertices of this path (cycle)
have no partners. If the former case holds, then z; is in P, which is a contradiction since x;
has a partner (namely ).

If the second case holds, then, since every vertex of C' has no partner in D, it follows that
there is no arc from a vertex of V(D) \ V(C) to a vertex of V(C'), which contradicts that
D is strongly connected. This completes the proof of the existence of a perfect matching
from X to Y. The proof for a perfect matching in the opposite direction is analogous. This
completes the proof of the theorem.

4. Remarks

Now using Theorem 1.10, we prove the following results (Lemmas 3.1-3.3).

Lemma 3.1. Let D be a strongly connected balanced bipartite digraph of order 2a > 8 with
partite sets X and Y satisfying the condition By, 2 < k < a/2. If D is not Hamiltonian,
then every vertex w € V(D) has a partner in D.

Proof of Lemma 3.1: Let D be a digraph satisfying the conditions of the lemma. For a
proof by contradiction, suppose that there is a vertex x in D, which has no partner. By
Theorem 1.10, D has a cycle factor, say C, Cy, ... , C;. Then [ > 2 since D is not Hamil-
tonian. Without loss of generality, we assume that € V(C}). It follows that d~(zf,) = 1.
Therefore, d(z{,) < a + 1. By Proposition 1, this means that the vertex z{, also has no
partner. Similarly, we obtain that d(z{) < a+ 1 (where z{" denotes the successor of af,
on (1) and hence, x}f also has no partner in D. Continuing this process, we conclude that
every vertex of C has no partner in D. This implies that there is no arc from a vertex of
A(V(D)\ V(Ch) to a vertex of V(C1)), which contradicts that D is strongly connected. The

lemma is proved.

Lemma 3.2. Let D be a strongly connected balanced bipartite digraph of order 2a > 8 with
partite sets X and 'Y satisfying the condition By, 2 < k < a/2. If D is not a cycle, then D
contains a non-Hamiltonian cycle of length at least four.

Proof of Lemma 3.2: Let D be a digraph satisfying the conditions of the lemma. For a
proof by contradiction, suppose that D contains a non-Hamiltonian cycle of length at least
four.

If D is Hamiltonian, then it is not difficult to show that D contains a non-Hamiltonian
cycle of length at least 4. So we suppose, from now on, that D is not Hamiltonian and
contains no cycle of length at least 4. By Theorem 1.10, D contains a cycle factor. Let
Cy, (s, ..., Cy be a minimal cycle factor of D (i.e., t is as small as possible). Then the length
of every C; is equal to two and t = a. Let C; = x;y;x;, where z; € X and y; € Y. By
Lemma 3.1, every vertex of D has a partner. This means that for every vertex z € V(D),
d(z) >a+kand d (z) >k >2,d"(x) >k > 2. Without loss of generality, we assume that
{z1,2;} with j # 1 is a dominating pair and d(z;) > 2a — k.
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Let Z be the subset of Y with the maximum cardinality, such that every vertex of Z
together with x; forms a cycle of length two. Without loss of generality, we assume that
Z =Ay1,y2,...,y}. Then 2a — k < d(z1) < 2l+a—1=a+ 1. Hence, [ > a—k. Since
D contains no cycle of length four, it follows that the vertices y; and z;, 2 < i < [, are not
adjacent. Therefore,

a+k <d(y) <2a—2+2<2k+2,

ie, k>a—2. Since a/2 >k >a—2, we have a > 2k > 2a —4, a < 4. If a = 4, then
k=a/2=2and ] =a—k=2. Itis easy to see that d(z1) = d(y,) = 6, the vertices y; and
x;, 3 < i <4, form a cycle of length two and z1y5 € A(D) or ysz, € A(D). Now it easy to
see that D contains a cycle of length four. Lemma 3.2 is proved. o

For the next lemma we need the following lemma due to Bondy.

Bypass Lemma (Lemma 3.17, Bondy [20]). Let D be a strong non-separable (i.e., UG(D)
is 2-connected) digraph, and let H be a non-trivial proper subdigraph of D. Then D contains
an H-bypass.

Remark: One can prove Bypass Lemma using the proof of Theorem 5.4.2 [1].
Now we will prove the following lemma.

Lemma 3.3. Let D be a strongly connected balanced bipartite digraph of order 2a > 8 with
partite sets X and Y satisfying the condition By, where 2 < k < a/2. Then the following
statements hold:

(i) the underlying undirected graph UG(D) is 2-connected;

(i) if C is a cycle of length m, 2 < m < 2a — 2, then D contains a C-bypass.
Proof of Lemma 3.3. (i) Suppose, on the contrary, that D is a strongly connected balanced
bipartite digraph of order 2a > 8 with partite sets X and Y satisfies the condition B; but
UG(D) is not 2-connected. Then V(D) = EU F U {u}, where F and F are non-empty
subsets, ENF =0, u ¢ FUF and there is no arc between E and F. Since D is strong,
it follows that there are vertices z € E and y € F such that {z,y} — u, ie., {z,y} is a
dominating pair. Without loss of generality, we assume that z,y € X. Then u € Y. By
condition By, it is easy to see that

3a <d(z)+dly) <4+2/ENY|+2/FNY]| <2a+2,

which is a contradiction. This proves that UG(D) is 2-connected.
(ii) The second claim of the lemma is an immediate consequence of the first claim and
Bypass Lemma. Lemma 3.3 is proved. o
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Undlnpnywo tpydwulyuw gpudbh hwdhjunnbjuwlnipjwl Jtpwpbpyuwg
Jwlgh fulinph dwuhG

U. QGwpphljuG L b. Gupuwbnjwb
Udthnthnid

Jdulqp (Discrete Mathematics and Theoretical Computer Science, vol. 19(3) 2017)
wnwownlt) & httmlywy fulnhpp:

luGnhp:  %hgnp D-G mdtin juuyulygquo 2a-ququpwlh 2¢ > 8 Ynnlnpnguo
tpyuwulyw hwjwuwpupnquwo gpud b, npnd ququplbph guGyugwod {z,y} hwnpnn
qnijgh hwdwp wtinh mGG htwnlyw) whwJwuwpnpymGabpp. d(z) > 2a—k, L d(y) > a+k
Ywi d(z) > a+k Ld(y) > 2a—k, npnbn 2 < k < a/2: Upyynp D-G hwihpunnGjwa k:

Ltpjw wpjuwnwlpnid wywgnigqwd t, np tph D qpudp pwjuwpupmd b dwlgh
funph wwjpwGGepht, wyw (1) D qpuwdp wguwpniGwynd £ ghy-pwyumnp b wnGjuqb
snpu tpupnipjudp ny-hwdhpunnGyuG ghyp, (i) D gpudh guGugwd r ququph hwdwnp
qnnipjnil niGh wjGwhuh th y ququp, np {z,y} - p hwnpnn qnq L

O 3apaue BaHra o raMUABTOHOBOCTU ABYAOABHEIX OprpadoB
C. AapOunsan u V. Kapaneran

AnHoTanuys

Baur (Discrete Mathematics and Theoretical Computer Science, vol. 19(3) 2017)
IIPEAAOJKUAQ CACAVIOIIYIO 3aAQ4y.

3apava: [lycte D -2a -BepHIMHHBIM 2a > 8 CHUABHOCBSA3HBINM COAA@HCHUPOBAHHBIN
ABYAOABHBIN Oprpad, B KOTOPOM AAS AIOOOM THapbl AOMHUHUPYIOIIUX BepiivuH {x,y},
dx) >2a—k, dly) > a+kunm d(y) > a+k, dly) > 2a—k, tae 2 < k < a/2. SIBagercs
Au D TaMUABTOHOBBIM ¢

B mHacTogmert paboTe AOKa3aHO, 4TO eCAU oprpad [ yAOBAETBOPSET YCAOBUAM
3apaum BaHra, To (i) D CcOAEpPXUT IUKA-(PAKTOpP W He-TaMUABTOHOBBIM ITUKA AAWHBI
110 KpauHeln Mepe 4, (ii) AAd KaKAOM BEpPIIWHBI T CYIIeCTBYeT TaKad BepIINHA Y, Y4TO
{z,y} ABAIeTCS AOMUHUPYIOIIUM IIAPOM.



