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Abstract

This study is devoted to address the challenge of solving ill-posed integral equations
for image restoration. The integral equation is widely recognized as an ill-posed prob-
lem [1]. Our study demonstrates that utilizing a two- dimensional function as a kernel
function in the integral equation leads to stable solutions, by establishing a consistent
dependence between the solutions and the input data (images).

We were able to obtain solutions for the integral equation without employing a reg-
ularization process, which significantly reduces the duration of the calculation process.
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1. Introduction

There are many publications on the subject of image restoration, and ongoing research
indicates its continued importance in the field.

Numerous methods have been developed for image recovery, including some well-known
examples such as Wiener’s method of filtration [2], Tikhonov’s regularization method for
solving numerical solutions to ill-posed double Fredholm integral equations of the first kind
[1, 3], and a family of methods that utilize the bundle theorem’s result. They are known
as blind deconvolution. Additionally, some methods rely on spectral analysisto restore the
image by altering the spectrum values corresponding to low and high frequencies.

It is worth noting that in solving the image restoration problem, additional challenges
may arise, such as estimating the degree of image distortion, determining the radius of the
scattering function, and finding the image sharpness coefficient or estimation.

The precision coefficient can be used as a characteristic or be one of the characteristics
of the completion of the iteration process.

Since images can have both low-frequency and high-frequency noises simultaneously, the
filtering problem becomes quite delicate. Implementing one filtering method can adversely
affect another one, and vice versa. To address this issue, spectral analysis can be used
to simultaneously alternate the spectrum values in the low-frequency and high-frequency
ranges.
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Considering the importance of V. Kotelnikov’s signal recovery theorem, which uses or-
thogonal basis functions η yn = sinc(x − n), n ∈ Z, however, when using the two- dimen-
sional sinc(x−n, y−η) = sinc(x−n)sinc(y−η) function as a kernel function in the integral
equation for image recovery, a fundamental question arises whether this approach can make
it a well-posed problem or not. Implementation of the algorithm in the time domain has
yielded positive results making this work worthwhile.

2. Integral Equation for Image Recovery

The integral equation for image reconstruction is a two-dimensional Fredholm integral equa-
tion of the first type (the unknown function is contained within the subintegral expression)
and is expressed as follows:

b∫
a

d∫
c

k(x− ξ, y − η)f(ξ, η)dξdη = g(x, y), (1)

where a ≤ x, ξ ≤ b, c ≤ y, η ≤ d.
The function k(x− ξ, y − η) is called a kernel of the integral equation and is also known

as a point dispersion (or spread) function, and the integral equation has a free term: g(x, y),
which is a given function (representing approximate data, images, etc.), f(ξ, η) is an un-
known function. This equation characterizes a variety of other physical processes, such as
tomography and chemical-mechanical smoothing [4].

It is assumed that the function k(x, y) is a quadratic integrable function:

b∫
a

d∫
c

|k(x, y)|2dxdy < ∞.

Here are some examples of kernel functions:

• Gaussian kernel: k(x, y) = 1
2πσ2 e

−x2+y2

2σ2 ;

• Distance-based kernel: k(x, y) = 1√
x2+y2

;

• sinc kernel: k(x, y) = sinc(x, y) = sinc(x)sind(y).

Fig. 1. Gaussian kernel. Fig. 2. Distance-based kernel. Fig. 3. sinc kernel.
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3. sinc(x) Function Properties

Let’s discuss some properties that are significant in various fields of data processing. Most
of these properties are used in the implementation of the algorithm.

+∞∫
−∞

sinc(x)dx = π.

The formula shows that the normalized sinc(x) function takes the following form:

sinc(x) =
sinc(πx)

πx
.

The following relation is valid for integers:

sinc(n) =

{
1, n = 0
0, n ̸= 0 :

(2)

The Fourier transform of sinc(x) is called an orthogonal function, which has the following
form:

+∞∫
−∞

sinc(x)e−2πiωxdx = rect(ω), (3)

where the bounded rectangular function is expressed as follows:

rect(ω) =

{
1, if |ω| ≤ a,
0, if |ω| > a,

where a = const.
For practical applications, it is more convenient to represent the function rect(ω) in the

following way:

rect(ω) =

{
1, if 0 ≤ ω ≤ 1,
0, out of range.

The frequency value of ω0 = 0.5 is commonly referred to as a center frequency. The
frequency range of ω0 < 0.5 is considered as a low-pass-frequency range while ω0 > 0.5 is
referred to as the high-frequency range. It is worth noting that at the value of ω0 = 0.5, the
filtered function retains its original value.

We can show that the bounded delta function with the integral representation is reduced
to the sinc(x) function:

δ(ω) =

a∫
−a

e−2iωtdt = 2

a∫
0

cos(ωa)dt =
2asin(ωa)

ωa
= 2asin(ωa). (4)

The delta function has a filtering property. Let us now examine the graphs of the sinc(x)
function and its spectrum (see Fig. 4).

Signals with constant spectral density are called white noise, which contains the entire
range of frequencies: (0,∞). By definition, the function rect(ω) is the spectral density of
low- frequency ω < 5 limited white noise. From (3) and (4) it follows that the sinc function
is the covariance function of low-frequency smooth noise.
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Fig. 4. Graphs of the sinc(x) function and its amplitude spectrum.

Fig. 5. Graphs of the rect(x) function and its amplitude spectrum.

Formula (2) shows that for all values of n, the vectors yn = sinc(x− n), n ∈ Z form an
orthonormal basis, which is used in signal recovery (V. Kotelnikov’s theorem).

According to the theorem (V. Kotelnikov), any function f(t), consisting of frequencies
from 0 tofc, can be transmitted continuously with any precision, using uniformly spaced
samples taken at intervals of 1/(2fc) seconds.

Any function f(t) containing frequencies between 0 and fc can be transmitted continu-
ously with any level of precision using samples taken at intervals of 1/(2fc) seconds.

x(t) =
∞∑

k=−∞
x(k∆)sinc

[
π

∆
(t− k∆)

]
, 0 < ∆ ≤ 1

2fc
.

For a signal to be accurately restored, it needs to be broadcast at a frequency of more
than twice its maximum frequency. For instance, audio signals are commonly broadcast at
a frequency of 44,000 hertz, given that the highest frequency audible to humans is 20,000
hertz. Additionally, Formula (4) shows the equivalence of the delta function of the sinc(x)
function. In physics, problems involving the delta function are typically handled by using
the sinc(x) function within a small range during calculations.
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4. The sinc Function and Image Reconstruction in the Time Domain

An image is a projection of reflected electromagnetic waves onto a receiver. The main
characteristics of an image, such as its resolution (the number of points per unit area),
illumination, color, and contrast. These characteristics are significantly different from those
characteristics of the signal that created it, such as its frequency, amplitude, and phase.
However, there is a commonality between them: both are the result of wave processes.

In images, frequency and phase have a hidden nature. It becomes an object of study
after the determination of its spectrum. The mentioned generality allows us to assume that
the image is also a signal and represent it as a linear combination of the two-dimensional
function sinc(x− ξ)sinc(y − η) and an unknown function.

In this case, the integral equation (1) will take the following form:

b∫
a

d∫
c

sinc(x− ξ, y − η)f(ξ, η)dξdη = g(x, y). (5)

To implement sinc filtering in the time domain, we can present (5) in a discrete form,
where the sinc(x) function will appear in a normalized form:

sinc(x− ξ, y − η)f(ξ, η) =
sin(2πω(x− ξ))

2πω(x− ξ)
× sin(2πω(y − η))

2πω(y − η)
. (6)

Let m, n be the number of splits in [a, b] and [c, d] intervals:

dy =
b− a

m
, dx =

d− c

n
.

We can represent the functions f(ξ, η), g(x, y), sinc(x)sinc(y) as matrices F , G and S,
respectively.
The G matrix has dimensions m× n, while the matrix corresponding to the sinc(x)sinc(y)
kernel function is a square matrix, the size of which is optional: k = 2p+ 1. This number is
chosen as an odd value to ensure the symmetry of transformations and prevent data skewing.
Typically, algorithms are implemented for values of k=3.5, as larger values dramatically
increase computation time.

To represent the unknown matrix F from (5) in the time domain, we use the known
matrix G and a discrete package (such as convolution) of the kernel function (6):

F = G · S,

where · is the convolution operation symbol.
The dimensions of the F matrix are (m + 2p)× (n + 2p) . The formula for the discrete

package looks as follows:

fi,j =
i+p∑

u=i−p

j+p∑
v=j−p

gi,jsu−i+p,v−j+p, i = p, p+ 1, ...,m− p; j = p+ 1, ..., n− p. (7)

It is important to note that while implementing the algorithm, the dimensions of the F
matrix may not be changed, but the indices u and v should be controlled to ensure that they
remain within the ranges [0,m) and [0, n).

Here is an example of the result of filtering an image containing Gaussian noise using (7)
(see Fig. 6).
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Fig. 6. a- original image, b- containing noise, σ = 2, ρ = 9, c- recovered image.

5. sinc Function and Image Restoration in the Spectral Domain

Image restoration in the spectral domain is performed by finding a solution to the linear
integral Equation (5). To find the unknown function, the two-dimensional Fourier transform
and the bundle theorem (convolution theorem) are used.

The set of functions f(x) and g(x) of one variable is the following integral:

(f ∗ g)(x) =
+∞∫

−∞

f(t)g(x− t)dt. (8)

To understand the meaning of the package formula, let’s consider a simple example that
deals with the product of two polynomials. Consider two polynomials P1(x) = 2x − 1;
P2(x) = x2 − 3x+ 1. We are required to find the product polynomial of these polynomials.

Let’s write the coefficients of these polynomials in the following form, starting with the
coefficients of the polynomial P1(x) in reverse order: (−1, 2).

1) P2(x) : 1, −3, 1 2) 1, −3, 1 3) 1, −3, 1 4) 1, −3, 1

P1(x) : −1, 2 − 1, 2 − 1, 2 − 1, 2

It can be observed that at each step, the coefficients of the polynomial P1(x) are shifted
one step to the left. The coefficients of the first polynomial are multiplied by the coefficients
in front of them and added up. As a result we get the following:

1) − 1 · 1 = −1; 2) − 1 · (−3) + 1 ∗ 2 = 5; 3) − 1 · 1 + 2 ∗ (−3) = −7; 4) 2 · 1 = 2.

We obtain the coefficients of the product polynomial in reverse order. Correcting them we
will get the following numbers: 2, -7, 5, -1.

P1(x)P2(x) = 2x3 − 7x2 + 5x− 1.

This calculation helps to characterize the significance of the bounded integral in Formula
(8). Using the Fourier transform, the product of two functions can be computed efficiently.
If F̂ and Ĝ are transforms of the of functions f and g, respectively, then the product is
calculated by the following formula:

(f ∗ g)(x) = Φ−1(F̂ · Ĝ),
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where (·)F̂ · Ĝ is the product of the corresponding elements of the vectors, and Φ−1 is the
inverse Fourier transform.

According to the bundle theorem, the right-hand side of Equation (5) is the two-
dimensional package of functions sinc(x − ξ, y − η) and f(ξ, η), so it can be represented
in the following form:

Φ2(f(ξ, η) · sinc(x, y)) = Φ2(g(x, y)). (9)

Φ2 and Φ−1
2 are direct and inverse two-dimensional Fourier transforms.

Let us denote the Fourier transforms of the functions f(ξ, η), sinc(x, y), g(x, y) as F̂ , Ŝ
and Ĝ, respectively. Since we are dealing with a linear equation and linear transformations,
we can obtain the following expression from Formula (9):

F̂ · Ŝ = Ĝ, or F̂ =
Ĝ

Ŝ
,

where we find the unknown function:

f(x, y) = Φ−1
2

(
Ĝ

Ŝ

)
.

Since image restoration is an iterative process, an estimate of the image quality is needed to
determine when the process should stop. This estimate is typically based on the normalized
image gradient and Laplacian, which characterize the contours of objects in the image.

Given an image A having m × n patches. The coefficient of sharpness is determined by
the following formula:

s =
1

2mnamax


√√√√√ m∑

i=1

n∑
j=1

(
∂2ai,j
∂x2

+
∂2ai,j
∂y2

)2

+

√√√√√ m∑
i=1

n∑
j=1

(
∂ai,j
∂x

+
∂ai,j
∂y

)2
 .

In the given example shown in Fig. 6, for the input image 6-a, which doesn’t contain
any noise, the image sharpness coefficient value is assumed to be s = 0.656817. Then, low-
frequency Gaussian noise with radiuse σ = 2, r = 9 is then added to the image 6-b, and
the sharpness coefficient is calculated again, resulting in s = 0.254214. After filtering in the
time domain, the sharpness coefficient is improved to s = 0.583647, and after filtering in the
spectral domain, the sharpness coefficient is further improved to s = 0.570277.

6. Conclusion

The paper presents a method for finding solutions to the integral equation for image restora-
tion, which bypasses the regularization process of an incorrectly set integral equation. This
is achieved by selecting an appropriate dispersion function (kernel) of the integral equation
of image restoration. The bounded two-dimensional sinc(x, y) function was chosen as the
kernel.
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àñå»ë ÏáñÇ½ ÁÝïñí»É ¿ ë³ÑÙ³Ý³÷³Ï »ñÏã³÷ sinc( x; y ) ýáõÝÏóÇ³Ý:

´³Ý³ÉÇ µ³é»ñ` ÆÝï»·ñ³É Ñ³í³ë³ñáõÙ, Ïáé»Ïï, ÙÇçáõÏ, ýáõÝÏóÇ³::

Ðåêîíñòðóêöèÿ èçîáðàæåíèÿ ñ èñïîëüçîâàíèåì ôóíêöèè
ÿäðà sinc

Ñóðåí Á. Àëàâåðäÿí

Èíñòèòóò ïðîáëåì èíôîðìàòèêè è àâòîìàòèçàöèè ÍÀÍ ÐÀ, Åðåâàí, Àðìåíèÿ
e-mail: souren@iiap.sci.am

Àííîòàöèÿ

Â ðàáîòå ïðåäñòàâëåí ìåòîä íàõîæäåíèÿ ðåøåíèÿ èíòåãðàëüíîãî óðàâíåíèÿ
âîññòàíîâëåíèÿ èçîáðàæåíèÿ, êîòîðûé ïîçâîëÿåò îáîéòè ïðîöåññ ðåãóëÿðèçàöèè
íåêîððåêòíî çàäàííîãî èíòåãðàëüíîãî óðàâíåíèÿ. Ýòî îáñòîÿòåëüñòâî
îáóñëîâëåíî âûáîðîì ôóíêöèè ÿäðà èíòåãðàëüíîãî óðàâíåíèÿ âîññòàíîâëåíèÿ
èçîáðàæåíèÿ. Â êà÷åñòâå ÿäðà áûëà âûáðàíà îãðàíè÷åííàÿ äâóìåðíàÿ ôóíêöèÿ
sinc( x; y ) .

Êëþ÷åâûå ñëîâà: Èíòåãðàëüíîå óðàâíåíèå, êîððåêòíûé, ÿäðî, ôóíêöèÿ.
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