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Abstract

Let {0,1}" be the set of all finite strings of elements from {0,1}, and let P be the
class of problems recognized by deterministic Turing machines, which run in polynomial
time (a problem is simply a subset of {0,1}*). This article defines the class P and shows
that P is isomorphic to the class P.

Based on the notions of 7-mitoticity and T-autoreducibility, K.Ambos-Spies introduced
the notions of P-m-mitoticity and P-m-autoreducibility. The notions of P -m-mitoticity
and P-m-autoreducibility are introduced by analogy with the mentioned notions.

The article proves that the index sets {z | W, is P-m-mitotic} and {z|W, is P-m-
autoreducible} are Z;-complete.
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1. Introduction

Information about the basic concepts of computability theory used in this article, in particular the
Turing machine (TM), the numbering of computably enumerable sets {WW;};¢,, and the arithmetical
hierarchy, can be found in Rogers [1], Soare [2].

The two definitions of polynomial time reducibility given by Karp [3] and Cook [4] are just
time-bounded versions of many-one reducibility (<,,) and Turing reducibility (<r).

Among other works devoted to the research of time-bounded computations and used in this
article, we note the works of Ladner [5], Ambos-Spies [6], Hopcroft, Ullman [7](1979), Sipser [8],
Arora, Barak [9], Terwijn [10].
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Notation. We fix the alphabet A = {0,1}.

Given a set Y, the set of all finite strings of elements from Y is denoted by Y*.

A Turing machine 7" (deterministic or nondeterministic) runs in polynomial time if there is
a polynomial function q such that for every input of length n, any computation sequence of 7
halts in q(n) or fewer moves.

It is an intuitively appealing notion that P is the class of problems that can be solved
efficiently.

In this article, we consider the class P (see Definition 2). Proposition 1 (below Definition 3)
shows that the classes P and P are isomorphic (i.e., there is an isomorphic mapping from P to P
and vice versa, there is an isomorphic mapping from P to P; with respect to the relations in
question) (see the definition of isomorphic mapping in Definition 1).

An oracle Turing machine runs in polynomial time if there exists a polynomial function g
such that for every input of length n and any oracle set X, the machine halts within g(n) steps
(see Ladner [5], p.156).

Note that the definitions of R. Ladner [11] and other authors are based on the concept of a
multitape Turing machine.

Based on the notions of 7-mitoticity and 7-autoreducibility, Ambos-Spies [6] introduced the
notions of P-m-mitoticity and P-m-autoreducibility. By analogy with the mentioned notions we
introduce the notions of P-m-mitoticity and P-m-autoreducibility (see Definitions 15,16) and also
give the definitions of index sets M(P-m)={z | W, is P-m-mitotic} and A(P-m) = {z |W, is
P-T-autoreducible}.

This article studies the location of index sets {z | W, is P-m-mitotic} and {z |W is
P-m-autoreducible} in the arithmetical hierarchy.

2. Preliminaries

Notation. Let w be the set of all nonnegative integers.
We will denote the A* elements by lowercase Greek letters o, 7, ...
Let us denote that o7 denote the concatenation of string o followed by .
Let < be the natural orderon A*(1 <0< 1< 00 < 01 < ---), where A represents the empty
string.
We will denote the subsets of A" by uppercase Greek letters Z,0,---, as well as by the
Latin letter P with subscripts (P;).
If o € A", then |a| denote the length of o.
If £ € A", then
- 1, ifo €
E(o) = { 0, ifo ¢
If AC w, then A(x) = y4(x)(where y, isa characteristic function of a set A).
Define the mappings hg, h; as follows:
Let hy be a 1-1 mapping from w onto A*, hy(0) = A, hy(n + 1) = (n + 2)-nd string according
to the order of strings on A*.

[1] [1]

Let hy be a 1-1 mapping from A*onto w.
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hi (1) = 0;

hy(n +1 string according to the order of strings on A*)=n (In fact, h; = hy?).

Definition 1. (i) Let two sets M and IM be given. Let there be defined any sort of relations
between the elements of each of these sets.

If it is possible to place the two sets into one-to-one correspondence so that the mapping
preserves the relations; that is, if with every element a of Mt there can be associated an element
b of M in a biunique manner so that the relations existing between any elements a, b, --- of It
also exist between the associated elements @, b, --- and vice versa, then the two sets are called
isomorphic (with respect to the relations in question), and we write 9t = 9. The mapping itself
is called an isomorphism (see Waerden [11], pp. 25-26).

(i) If in two sets M and N certain relations are defined (such as a < b or ab = ¢) and if to
each element a of MM an image a = @a is assigned in such a manner that all relations between
the elements of Mt also hold for the images (so that, for example, a < b implies @ < b in the
cases of the relation <), then ¢ is called a homomorphic mapping or homomorphism from M to
N (see Waerden [11], p. 28).

Remark. 1t can be proved that the mapping h,: A* — w is an isomorphism.

It is known that there exist effective enumerations of the sets P, P;, ... and oracle Turing
machines My, M4, ... , where P; denotes the set recognized by the Turing machine (also denoted
by P;), which runs in polynomial time, and M; denotes the oracle Turing machine, which runs in
polynomial time. M;(A) denotes the set recognized by M; with oracle 4 (see Ladner [5], p.157).
Notation. For a given function f, fT x denotes the restriction of f to arguments y<x, and Al x
denotes y,l x.

(Note that any string o € A*can be considered as a partial function from w into A.)

Let hy(A) = {7]@3x) [ho(x) =T & x € A]}LLh(BE) = {x]|3D)[h(r) = x & T € E]}.

Let 0 € A" .By ¢’ we denote a string y such that hy(y) = hy(o) + 1.

Let h be a computable function from w onto w?.

Let Q. be the Turing program with code number e (also called index e) in the standard listing
(of programs), and let ¢, be the partial function computed by Q, (see Soare [2], p.14).

We write @, (x) =y if x,y,e < s and y is the output of ¢,(x) in < s steps of the Turing
program Q.. If such a y exists, we say @, ((x) converges, which we write as ¢, s(x) |, and
@es(x) T otherwise. Similarly, we write @,(x) l if ¢@,s(x) | for some s, and we write
@Yo (x) I=yif @.(x) l=y and ¢.(x) = y and similarly for ¢, (x) {=y (see Soare [2], pp.16-
17).

W, = dom ¢,.

Based on the available numbering of computably enumerable (c.e.) sets {W; };¢,,, the available
numbering of computable operators {®;};c,,, and the available enumeration of polynomials

{4:} icw,» We define for an arbitrary i (proceeding from the fact that h(i) = (io,i;))
1) the set P; as follows: (Vx)(Vs > g; () [Pi,s x)=Ww; 0.1, (¥) (x)],
it is obvious that (Vx) (Vs = g;, (x)) [pi,cul(x) (x) = P (x) =gpn P; (x)];
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2) the oracle Turing machine M; as follows:
) (Vs = q;,(x)) (V0) [ M15(0) () = @y 0, (1) (@) ()],

it is obvious that (Vx) (VS > qil(x)) (Vo) [Mi,qil(x) (0)(x) =
M, ;(0)() =apn Mi(0)(x)|.
Definition 2. P = {P;| i € w} (note, that P = {P; | i € w}).

Based on the above and similar statements , which are also presented, for example, by
Hopcroft, Ullman [7], Sipser [8], Arora, Barak [9],Terwijn [10], the following conclusion is
presented in [9]:

All low-level choices (number of tapes, alphabet size, etc..) in the definition of Turing
machines are immaterial, as they will not change the definition of P (see Arora, Barak [9], p. 30).

Thus, since neither the number of tapes nor the way the inputs and outputs are presented
(binary coding or natural numbers) significantly affect, we can assert that

(Vi)EN V) [P, (x) = P;(he(x))] & (¥))(FD (V) [P, (0) = Pi(h1(0))]
and (VD)3 (V) (VA) [M(4) (x) = M;(ho(4)) (ho(x)))] &
(V@D (Vo) (VE ) [M;(E)(0) = M;(hy(E))(hy (0))].
In [12], the existence of a homomorphic mapping from P to P and, vice versa, the existence
of a homomorphic mapping from P to P (with respect to the relations in question) were proved.

Now we will prove that P and P are isomorphic (with respect to the relations in question).
Define the relations in P and P.

Definition 3. (i) Let P, P; € P . P; is to the lefi of Pj(Pi < Pj) if@AyeA)VT<y)
[P(1) = (@) &Pi(y) < B(y)] (e () = 0 &P(y) = 1);
(i) Let P, P, € P. P; isto the lefi of P;(P; <, B;) if (3x)(Vy < x)
[2:(y) = B(y) & Pi(x + 1) < Pi(x + 1](i.e., P;(x + 1) =0 & Pi(x + 1) = 1).
It is shown in [12] that there is a homomorphic mapping from P to P and vice versa, there
is a homomorphic mapping from P to P (with respect to the relations in question).

Proposition 1. The classes P and P are isomorphic.
Let's define the mapping 0: w - w.

Let j, be such that (Vo) [PO (o) = P} . (h1 (O'))].
(As noted above, for P, there exists such P; )
1) Define 0(0) = j,.

n+1) Suppose that (Vko < n)(Vky)(o(ko # k1))

Let m, be such that (Vo) [Pn (o) = Pmo (h1 (a))].

If my € {0(0),0(1), - o(n — 1)}, then define p(n) = m,.

If m, € {0(0),0(1), o(n— 1), then let m, be such that (Vo)[P,(c0) = B, (h,(0))] &
my € {0(0),0(1),:--o(n — 1)}. Such m exists because according to the Padding Lemma (see
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Soare [2], p.15, Rogers [1], p. 22), (Vvy)(3v = v;) [v is the index of c.e. set (i.e. the domain of
the p.c. function ¢,) such that (Vx)(W,(x) = B,(x)) and for all x W,(x) is computed in the
same time as B, (x)].

Then define o(n) = my. (Thus the definition of mapping o is completed.)

Let P;,P; are such that P;<P; .

Then 3y € A)(V T < Y)[Pi(D) = Pi(2) & Pi(7) = Pyiy (Il () & Pi(y") = 0 & P (¥") =
1]. Since P;(y") = P,iy(hy(¥")) =0 and Pi(y") = Pyjy(hy(¥)) =1 then P,;y(hy(¥)) <
Po(i ().

As (VT <vy) [Pg(i) (h1 (‘[)) = Pg(j)(hl (T))] then PQ(i) < Pg(j) (according to Definition 3).

So, if P; < P;, then Pg(i) < PQ(J-).
Thus, there is a mapping P—P such that it preserves the order, i.e., there is an isomorphic mapping
from P to P.

Similarly, one can prove the existence of an isomorphic mapping from P to P. So, we can say
that the classes P and P are isomorphic (with respect to the relations in question).

2.1. Premliminaries about P-T-mitoticity

Definition 4. Define ® <% Z, if there exists an i such that B = M;(A) (see Ladner [5], Ambos-
Spies [6]).

Definition 5. Define B <2 4 if there is an i such that B = M;(4).

Definition 6. A splitting of A is a pair A4, A, of c.e. sets such that A;NA, = @. We sometimes
will write A=A, 1A, if Ay, A, is a splitting of A (see Downey, Stob [13], p. 4).

Definition 7. A c.e. setA is T-mitotic if there is a splittingA,, A, of A suchthat A, =; A, = A
(see Downey, Stob [13], p. 83, Lachlan [14], pp. 9-10).

Let us recall some information about 7-autoreducibility.

Definition 8. We say that a partial recursive functional W is an autoreduction if, for all X and n,
the computation of W(X,n) includes no question of the form “n € X?”. A set A is T-
autoreducible if there exists an autoreduction ¥ such that A = W(A) (see Trakhtenbrot [15],
Ladner [16], p. 199).
From the definition of 7-autoreducibility it follows:
A is T-autoreducible & (Fe)(Vx)(®.(AU{x}(x)) = A(x)) &
(Fe) (Vo) (P (A — {x}) (x)) = A(x)).
Ambos-Spies introduced the following notions:
a) A computable set E is P-T-mitotic if there is a set ® € P such that £ =f 2N6 =L 2N6.
Otherwise, Z is non-P-T-mitotic (see Ambos-Spies [6], p. 4).
b) A computable set Z is P-T-autoreducible if for some n € w and every o € A", E (0) =
M, (2 —{o})(o) (see Ambos-Spies [6], p.19).

(Ambos-Spice prefers the expression “E (0) = M,,(E — {0})(0)” instead of the equivalent
expression “E (6) = M,,(E U {a})(0)”. For the sets of nonnegative numbers, the expression
“A(x) = M, (AU{x})(x)” is used in the definition of T-autoreducibility, for example, in Downey,
Slaman [17], p. 121.)
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Ambos-Spies has proved that

(i) if E is P-T-mitotic, then Z is P-T-autoreducible(see Ambos-Spies [6], p.19),

(if) there is a computable set Z, which is P-T-autoreducible, but not P-T-mitotic (see Ambos-
Spies [6], p. 21).

We represent the definitions of P-T-mitoticity and P-T-autoreducibility according to Ambos-

Spies with slight modifications (see Ambos-Spies [6]).
Definition 9. A computable set A is P-T-autoreducible if for some n € w and every x €
w, A(x) = M, (AU{x}) (x).
Definition 10. A computable set A is P-T-mitotic if there is a set B € P such that
A =P ANB =P ANB. Otherwise, 4 is non-P-T-mitotic.

Let us give the definitions of index sets T(P)M , AT(P).
Definition 11. T(P)M={z | W, is P-T-mitotic},
AT(P) ={z|W, is P-T- autoreducible}={z |(3i)(Vx)[M;(W, UxD(x) = W,(x)] & (W, is
computable)}.

2. 2. Premliminaries about P-m- mitoticity

Definition 12. (Computing a function and running time)
Let f:A* > A" and let T: w — w be some functions, and let M be a Turing machine (TM). We
say that M computes f in T (n)-time (we write T (n)-time instead of T-time, for emphasis that
T is applied to the input length), if for every o € A", if M is initialized to the start
configuration on input o, then after at most 7(|o|) steps it halts with f{o) written on its output
tape.

We say that M computes f if it computes f in 7(n) time for some function f: w — w. (see
Arora, Barak [9], p. 17)

Definition 13. {f,,:new} is the effective enumeration of PF (the class of deterministically
polynomial time computable functions from A* to A*).
Z is polynomial time many-one (P-m) reducible to © (E <F ), if for some n, (Vo € A*)
(5(0) = G)(fn(a))) (see Ambos-Spies [6], p.2).

By analogy, for arbitrary n we will define the function f,,: w = w.

Let {¢; }ic., be the enumeration of the partial computable (p.c.) functions of one variable and
T; be the Turing machine which computes the p.c. function ¢; (see Soare [2], p.12, Rogers [1],

p. 12). Remind, that & is a computable function from w onto w?. Then we define (proceeding
from the fact that 2 (i) = (i, i;)) the function f; (for all i) as follows:
Definition 14. @) For arbitrary i let T;, be initialized to the start configuration on input x. Then

define the function f; as follows:
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the total number of 1’s, appearing anywhere on the
£(x) = tape, after u-th step, if (Elu < q; 1) ( T;, stops at u-th step) ;
(%) =

the total number of 1’s, appearing anywhere on the
tape, just after q; -th step,  otherwise .

b) Ais P-m-reducible to B (A <b, B), if (i)(Vx)(¥s; = q;,(x)) (35, = 1)

Definition 15. A computable set = is P-m-mitotic if E is finite or cofinite if there is a set
@eP such that Z = 2N 0O =P Z N 6O (see Ambos-Spies [6], p. 4).

Definition 16. A computable set = is P-m-autoreducible if Z is finite, or cofinite, or if for
some fePF,Z <, Z via f and (Vo € A") (f (0) # o) (see Ambos-Spies [6], p.19).

Definition 17. A computable set A is P-m-mitotic if A is finite or cofinite if there is a set
BeP such that 4 E,F; ANB Efn A N B (see Ambos-Spies [6], p. 4).

Definition 18. A computable set A is P-m-autoreducible if A is finite, or cofinite, or if
A)[A <,, A via F, and (Vx) (fi(x) # x)).

Definition 19. For any given class € of computably enumerable sets, let IND; = {z|W, € £} .
If A =IND; for some &, A is called an index set (see Rogers [1], p. 324).

Let us give the definitions of index sets M(P-m), A(P-m).
Definition 20. M(P-m) = {z | W, is P-m-mitotic},
A(P-m) = {z |W, is P-m- autoreducible}.

3. Results

To formulate the main results, we remind the following definitions:
Definition 21. A set A is X,,-complete (II,,-complete) if A € X,(II,,)) and B <; A for every
B € £,,(I1,) (it makes no difference whether we use “B <,, A” or “B <; A” in the definition
of X, -complete and IT,,-complete) (see Soare [2], p. 64).
Definition 22.  Rec = {z| W, is computable (recursive)}, Fin = {z| W, is finite}, Cof =
{z|W, is finite} (see Soare [2], p. 21).

It is known that Fin is X,-complete, Cof and Rec are X;-complete (see Soare [2], pp.
65-67, Rogers [1], pp. 327-328).

One of the approaches to the problem of lower bounds (called a reducibility approach in [1])
is to take certain distinguished sets as standard “reference points” and to obtain bounds on the
level (and degree) of any other given set by establishing reducibility relationships between it and
one or more of the reference sets. In most cases, we shall use sets complete in X, or [, (n > 0)
as reference sets, and we shall use m-reducibility. The reducibility approach is particularly useful
for getting lower bounds on level (and degree). In conjunction with the Tarski-Kuratowski
algorithm (and the strong hierarchy theorem), it sometimes enables us to identify not only the level
but, indeed, the recursive-isomorphism type of a given set (see Rogers [1], p. 325).
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Lemma 1. Let € be the class of computably enumerable sets, such that INDg 2 Cof, INDg 2
Rec and IND; € X5. Then IND; is X3-complete (note that Rec = {z |W, is non-computable}).

Proof. To prove Lemma 1, we use Rogers' proof of index set Rec’s Xz-completeness (see Rogers
[1], pp. 327-328). To do this, the X;-complete reference set B is used (where B = {x |(y)
[y € W, & W, is infinite]}) and it is proved that B <,, Cof (namely, such a general computable
function g is constructed that [z € B < g(z)€Rec]. Moreover, the construction is such that
eventually [z € B = g(z)€Cof] and [z € B = g(z)ERec].

Thus, if the class € satisfies the requirements of Lemma 1, the abovementioned function g
will m-reduce B to IND¢ (i.e., z € B < g(z) €EIND¢). And since INDgs € X5, then INDg is
X;-complete. [

In the article [12] it is proved that AT(P) and T(P)M are Xz-complete.

Theorem 1. A(P-m) is X3-complete.

Proof. Let's first prove that A(P-m) € Zs.

z € A(P-m) < [W, is computable]& [[(3)[W, <P W, via f; & (x) # x] V (W,is finite) v
(W, is cofinite)] < (3z,)(Vn)(Vuy) Quq = ug)[((nEW,,,, & nEW, ,, )V

(1 & Wy, &1 € Wy, ) & [[(D)(W) (V51 24;, () (Es225:1)

Wy, () = Wi, (fis, (1)) & fis, () # 2]V @to)(VED[ts S 8 V
Wae, =Wye, V A1) (Vo) (3t)[v1 Svp) Vv EW, . ]] &
(3z1) (@D (3to)(Fvy)

(V) (Yuo) (Vx) (Vs124;, (%)) (V1) (Vv,)

Quy = ug)(3sz2s1)(3t2)

[(neW,, &neéW, ,)Vv(neW,, &neW,, )&

([ Wy, () = Wy, (Fis, () & fos, () # 2] V
[ty <to V Wy, =W, ] VIvi Svo V vy €W 1]
Thus, T(P)Me 2.
Since A(P-m) 2 Cof, A(P-m) 2 Rec and A(P-m)€ 25 it follows from Lemma 1 that
A(P-m) is E3-complete. [

Theorem 2. M (P-m) is X3-complete.

Proof. Let's first prove that M(P-m) € Z5.

z € M(P-m) & [W, is computable] & [[(3io)[W, =5 (W,NP,) =h, (W,NP,,)]

v (W, is finite) V (W, is cofinite)] <

(Elzl)(vn)(vuo) (Elul = uO)[(n € VVz,u1 &n e VVZ1:U1) \% (Tl % Vl/z,ul &ne szl,ul) &
[[QD(@E))(Vx)(Vsy = max(q;, (%1),q;, (x1))) (3s2=51)

[VVZ,SZ (xl) = (VVZ,SZ nﬁi,sz) (/‘;,sz (xl))] &

3k)(Vx3)(Vs3 = max(q;, (x2),qk, (x2))) (354=53)
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[(Wps, NP ) (2) = Wi, (fios, (62))] &

AD(Vx3)(Vss = max(qy, (x3),q1,(x3))) (Is6=5s5)

W5 () = Wy5,NBis)) (fis, ()] &

@m)(Vx,)(Vs; = max(q;, (x4),qm, (x4)))(3sg=57)

[(WasyNPrsg) () = Wi, (Fonsy 6 )]

@At)(VE)[ty <tg VW5, =W, 1 V Q) (V) At)[vs S v V v EW,]] &
(3z,)AD(EFNEFR)ED(EM)(3t)(3vy)

(V) (Vuo) (Vx1) (Vsy = max(q;, (x1),9;, (%1))) (Vx2) (V3= max(q;, (X2),qx, (X2)))
(Vx3)(Vss = max(qy, (x3),q1, (x3))) (Vx4) (V7 2 max(qy, (X4),qm, (x4))) (VE1) (Vv1)
(Quy = ug)(3s2251) (3s4=53)(Is6=55) (Fsg=57) (3t,)

(neW,, &neéW,, ) v(neW,, &neW, , ) &

[ W5, (01) = Wys,NPys) (fis, (X1))] &.

[(Wys, Py (2) = W, (fios, () )] &

Wpsg(63) = Wy5,NBis) (fis, ()] &

[(VVZ,Sg npi,58)(x4) = VVZ,SS (fm,ss(xtl))] v
[ty <to VW, =W, 1V [vi <vo Vv €Wy,

Thus, M(P-m)€ 2;.
Since M(P-m) 2 Cof, M(P-m) 2 Rec and M(P-m)€ %, it follows from Lemma 1 that
M(P-m)is Zz-complete.]

4. Conclusion

It is known that an effective enumeration of the sets of the class P (namely, Py, P; , -+, P;, *-+) exists
and, thus, P = {P;|i € w}. Based on the available numbering of computably enumerable sets
{W;}icw, a sequence of sets of non-negative numbers P; is constructed such that their effective
enumeration exists and P = {P; | i € w} by definition.

It is shown that the class P is isomorphic to the class P. Using traditional methods, it is shown
that the index sets 4(P -m) and M(P-m) are Z3-sets. Applying the method used by H.Rogers in
proving the X;-completeness of the index set {z | W, is computable}, it is proved that the index
sets AP-m) ={z|W, is P-m-autoreducible} and M(P-m)={z|W, is P-m-mitotic} are
X;-complete.
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P-m-dhpnunhl] puqunipniutbp b pyuputtuljut
wunhdwbwljupg

Upukt 2. Unjugyu! b vwgwnnip U. Pupubinjui?

122 QUU Pudnplunpljuyh b wjnndunwugdwi wpnpikdubph htunhunnin, Gplwb, Zujwunwut
2 Uhdkuu Punuuwnph Undpytp, Gphwl, Zujuunwi

e-mail: arsenmokatsian@gmail.com, khachatur.barseghyan@outlook.com

Udthnthnd

“hgmip {0,1}"-p {0,1} puqunipjult mwpptiphg Yuqujws pnpnp Jtpgwnp pnpubph
puquUnipimit £ b P-u wjuwhuh  Apdbwfuiinhpbibph nuwu k, npnup dwbwskh b
phnbpdhtthunwjutt  @mphtquit dbpktwubtph dJhgongny, npntg woluwwnwiph
dudwbwlp pmquinudnpbi E jupudws dntnpughtt wmyuitph swihhg (Apdbwpuiimhpp
thwuwnnpki {0,1} puqunipjut tupwupwuqunipiniu B):

Un1jt hnnjwsnmid vwhdwtyws P nuup b gnyg Ewnpjws, np P-u hgqnunpd & P
nuuht:

Blubiny 7-dhpnunnhlnipnit b 7-hupttwhwigbignid hwuljugnipyniutiphg 4. Udpnu-
Uwhup ubpunisky £ P-m-dhpnunhlnippit b P-m-huptwhwqbgnid hwuljugni-
pnLubbpp:

Zudwidwinpkl akpdmét] i P-m-dhpnunhynipmit & P-m-huiptiwhwighgnid
hwuljugnipniuubpn:

Syju hnpJusmid wyugnigyws k, np {z | W,-tt  P-m-dhpnunhy £} b {z | W,-u
P-m-huptiwhwiqkgynn t} hipkpuwhtt puqunipibiitkpp £5-1phy L.

Putiwh punkp’ Puputulut wunhfwtwlupg, P-m-dhpnnhl puqunipntd,
P-m- huptwhwigkgynn puqunipnil, hunkpuwht puqunipni:
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P-m-MutoTHYECKHE MHOKECTBA U apu(PMETHIECKAsI HepapXus

Apcen A. Moxkausu! u Xauaryp A. Bapcersn?

' MucturyT npobnem uapopmaruku u apromatusaiuu HAH PA, Epesan, Apmenus
2 Cumenc Uunactpu Codraep, Epepan, Apmenus

e-mail: arsenmokatsian@gmail.com, khachatur.barseghyan@outlook.com

AnHoranus

[Tycts {0,1}" sBOsIETCS MHOKECTBOM BCEX KOHEYHBIX 1IEMTOYEK, COCTABIICHHBIX M3 3JIEMEHTOB
mHoxkectBa {0,1} u P sBisercs kimaccoM npobiem, pacrno3HABAEMBIX JETEPMHUHHPOBAHHBIMU
MamuHaMu ThIOpHHTA, BpeMsi pabOThl KOTOPBIX MOJMHOMHUATBHO 3aBUCUT OT pa3Mepa BXOIHBIX
TaHHBIX (npobiema GaKTUIECKH SIBISIETCS MTOJAMHOXKecTBOM MHOKecTBa {0,1}%).

B nanHo# cTaThe onpeneneH Kiacc P u nokasano, uto P nzomopden knaccy P.

Hcxons 3 nouaruii 7- MUTOTUYHOCTA U T-aBTocBoguMocTH K. AMOoc-Criuc BBEI MOHATUS
P-m- mutoTHYHOCTHU U P-m- aBTOCBOJAUMOCTH.

1o aHANOTHH C YIOMSAHYTHIMU HOHATHAMH BBEJICHBI OHATHSA P-m-MUTOTHYHOCTH U P-m-
ABTOCBOJIMMOCTH.

B nanHOi#1 cTaThe qOKa3aHO, YTO UHIEKCHBIE MHOXKECTBA, {Z | W, — P-m-mutoTnyHO} 1
{z | W, — P-m-aBTOCBOMMO} SBJISIOTCS X3-TIOJHBIMHU.

KnroueBpie cnoBa™ Apudmernueckas uepapxus, P-m-MUTOTHYECKOE MHOXKECTBO, P-m-
aBTOCBOJMMOE MHOKECTBO, HHEKCHOE MHOXECTBO.
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