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Abstract

In this paper, some new quantified propositional proof system is introduced
and compared by proof complexities with other quantified and not quantified
propositional proof systems. It is proved that the introduced system 1) is
polynomially equivalent to its quantifier-free variant and 2) has exponential speed-
up by sizes over some variants of the quantified resolution system. As the introduced
system has a very simple proof construction strategy, it can be very useful not only
in Logic, and therefore in Artificial Intelligence, but also in areas such as
Computational Biology and Medical Diagnosis.
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1. Introduction

It is well known that Mathematical Logic, in particular propositional calculi, is the base of Artificial
Intelligence and therefore, has very interesting applications in fields such as Computational
Biology and Medical Diagnosis.

Propositional proof complexity originates from the seminal paper by Cook and Reckhow. [1].
It provides a path for approaching the P vs. NP problem: proving super-polynomial lower bounds
to all propositional proof systems is equivalent to showing that NP is different from coNP and
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therefore P is different from NP. It is well known that the exponential lower bounds for proof sizes
of some sets of tautologies are obtained in many systems, but for some of the most natural calculi,
in particular, for Frege systems, the question about polynomially bounded sizes is still open. While
traditionally the complexity of proofs for propositional tautologies has been at the centre of
research, the past two decades have witnessed a surge in proof complexity of quantified boolean
formulas (QBFs), which give not only a new class of tautologies, but some quantifier-free
tautologies can be proved simpler in any quantified systems. Some interesting survey of proof
complexity for QBFs is given in [2], where the complexities for some QBF families are compared
in different quantified propositional proof systems: variants of QBF resolution, QBF Frege systems,
quantified versions of cutting planes, QBF sequent calculi and some others.

Based on the propositional system GS (Generalized Splitting), described in [3], a new
quantified propositional proof system is introduced here. The place of the system GS in the
hierarchy of propositional proof systems [1] remains unknown and moreover: by the comparison
of the two main proof complexity characteristics (steps and size) for two classes of formulas in
the system GS and Frege systems it is shown that for one class of considered formulas the bounds
in the system GS are much better than those in the Frege systems, while for the second class the
situation is quite the opposite [4].

From all the above mentioned it follows that the investigations of proof complexities in some
quantified variants of the system GS can be important. Consequently, the possible practical
applications of these systems in different non-mathematical areas may also be important.

2. Preliminaries

We will use the current concepts of a propositional formula, a proof system for propositional
logic, proof complexity, and well-known notions of polynomial equivalence and exponential speed-
up. The language of considered systems contains the propositional variables, logical connectives
-,&,v, D, < and parentheses (,). Following the usual terminology, we call the variables and negated
variables literals. In [3], the following notions were introduced. Each of the following trivial
identities for a propositional formula yr we call a replacement rule.

0&yY =0, P &0 =0, 1&y =1, P&1=1,
0vy =, Yvo=1y, vy =1, PYvi=1,
0oy=1, Yyo0=1, 1oy =1y, yol=1,
0=1, I=0,

l.=|J:
Oev=y Yyeo=1, ley=y, peol=y.

The application of a replacement rule to some words consists in replacing some of its sub-words,
having the form of the left-hand side of one of the above identities, by the corresponding right-hand
side.
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The proof system GS. Let ¢ be some formula and p be some of its variables. The results of the
splitting method of formula ¢ by variable p (split variable) are the formulas ¢[p3] for every 8
from the set {0,1}, which are obtained from ¢ by assigning & to each occurrence of p and
successively using replacement rules. The generalization of the splitting method allows associating
every formula ¢ with some tree with root, the nodes of which are labeled by formulas and edges,
labeled by literals. The root is labeled by itself formula ¢. If some node is labeled by formula v and
a is its some variable, then both edges, which go out from this node, are labeled by one of literals
a® for every & from the set {0,1}, and each of the 2 “sons” of this node is labeled by the
corresponding formula v[a3 ]. Each leaf of the tree is labeled with some constant from the set {0,1}.
The tree, which is constructed for formula ¢ by the described method, will be called a splitting tree
(s.t.) of @. It is obvious that by changing the order of split variables in the given formula ¢, we can
obtain different splitting trees of ¢. We can note that the strategy of splitting tree construction is
quite simple.

The GS proof system can be defined as follows: for every formula ¢, some s.t. must be
constructed and if all the leaves of the tree are labeled with the value 1, then the formula ¢ is a
tautology and therefore we can consider the pointed constant 1 as an axiom, and for every formula
v, which is the label of some s.t. node, and p is its split variable, then the following figure v [p°], v
[p}] Fv can be considered as some inference rule, hence every above-described s.t. can be
considered as some proof of ¢ in the system GS. Note that if we consider the splitting method for
formulas given in disjunctive normal form, then the GS system is the well-known Analytic
Tableaux system.

By | ¢| we denote the size of a formula ¢, defined as the number of all logical signs in it. It is
obvious that the full size of a formula, which is understood to be the number of all symbols, is
bounded by some linear function in |¢ |.

The T-complexity (L-complexity) of s.t. is the number (the sum of sizes) of different formulas,
with which its nodes are labeled. The T-complexity (L-complexity) of GS-proof for tautology ¢
is the value of minimal T-complexity (L-complexity) of its splitting trees.

3. Main Results

Quantified Splitting system (QS). A QBF is a propositional formula augmented with Boolean
quantifiers v, 3 that range over the Boolean values 0, 1. Every propositional formula is already a
QBF. Let ¢ be a QBF. The semantics of the quantifiers are: Vx¢(x) = o[x°] & ¢[x*] and Ixp(x) =
o[x° ] v ¢[x* ]. In standardized QBF investigated in computer science , all quantifiers appear
outermost in a (quantifier) prefix and are followed by a propositional formula, called a matrix. The
variables following the quantifier Vv are called universal variables, and the variables following the
quantifier 3 are called existential variables. The system QS works as follows: for any QBF formula
o, we use the system GS to the matrix of ¢. S.t. for every GBF tautology ¢ must be the following:
if for any step the splinted variable a is a universal variable of @, then both subtrees, stuffed from
the o® and o labeled edges must have some branch, ended with value 1 labeled leaves; if for any
step the splinted variable a is an existential variable of @, then at least one of the subtrees, stuffed
from the o or o! labeled edges must have some branch, ended with value 1 labeled leaves.
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QU-Resolution system. Propositional resolution [2] is a refutational system operating with
clauses, i.e., it demonstrates the unsatisfiability of a given CNF. It has only a well-known resolution
rule. QBF resolution systems work with fully quantified prenex QCNFs. As in propositional
resolution, these QBF systems are refutational calculi, i.e., they refute false QBFs to be obtained
by augmenting the propositional resolution system using the resolution rule by just one new rule,

the universal reduction rule, % , Where ¢ is partial substitution that allows a universal variable

from a clause C to be replaced by either 0 or 1, provided that u appears right of all variables in C in
the prefix Q. Intuitively, this means that a universal variable u can be deleted from a clause C if u
is rightmost in C with respect to Q, i.e., no variable in C depends on u.
Theorem. 1) The systems GS and QS are polynomially equivalent by steps and sizes;
2) The system QS has an exponential speed-up by size over the QU-Resolution
system.

Proof of 1) is obvious because every quantifier-free tautology A(x1, ..., Xn) Can be presented as a
QFB formula VX1 ...xn A(Xy, ..., Xn), the matrix of which is A(xy,...,Xn) . Proofof 2)
is based on the investigation of proof steps and sizes of equality families of QBFs

SCh=3X1...XnVU1 .. Unpdt1 ... th (A Eioouw) Dt)A(V ti).

1<i<n 1<i<n
For every s.t., we use its scheme, which is the same tree without node labels. It is not

difficult to see that the s.t. of SCi-matrix and the s.t. of SC, —matrix have the following
schemes:

ot

6 066 o

Fig. 1. SG1
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It is not difficult to note that in the s.t. for SG>-matrix the same subtree is repeated three times
after splitting by t2 = 0, by t2 = 1, u2 = 0, x2 = 1 successively and by t2 = 1, u2 =1, x2 =0
successively, and this subtree is the s.t. of SCi-matrix.

It is not difficult to prove by analogy that in s.t. for SCy-matrix the same subtree - s.t. for SCh.
1 is repeated three times after splitting by tn =0, by tn = 1, un = 0, xn = 1 successively and by t, =
1, un =1, x, = 0 successively.

If we denote the number of different formulas in the constructed s.t. of SG, — matrix by (n),
then we have (1) =6 and (n) = (n — 1) + 4, therefore (n) = 4n + 2. Note, that the longest branch
in any s.t. of SG, —matrix must have 3n + 1 nodes and size of SG, —matrix 4n — 3, therefore
T-complexity of QS-proof for SG, is 6(n) and L- complexity of QS-proof for SG» is no more
than (4n + 2)(4n — 3) = O(n?).

As it is mentioned in [2], the equality formulas SGy, are exponentially hard for QU-Resolution
(i.e., they require proofs of exponential size), the point 2) of the theorem will be proved, if it is
shown that the system QS p-simulates the system QU-Resolution. The last statement is obvious
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because a) the system GS p-simulates Resolution system and b) the universal reduction rule,
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<
o)’

where ¢ is a partial substitution that allows substituting a universal variable from a clause C by
either 0 or 1, while in the system QS it is allowed to substitute every variable by either 0 or 1.
Note that analogies of the GS and QS systems can be constructed for Many-valued logic [5],
which is more applicable in such fields as Formal Verification, Artificial Intelligence, Operations
Research, Computational Biology and Medical Diagnosis.

. Conclusion and Future Work

All the above results, besides their mathematical significance, have practical applications in many
areas, therefore the following investigations can be useful:

a)

b)

as it is proved that the GS and QS systems are polynomially equivalent and as mentioned
in the Introduction, the GS system and Frege systems are incomparable, then Frege
systems and the QS system are also incomparable, therefore it is interesting to compare
the QS system with the other quantifier-free and quantified systems, in particular, with
quantified Frege;

as the introduced system has a very simple strategy for constructing proofs it is interesting
to investigate how to use the many-valued analogies of the GS and QS systems in medical
diagnosis.
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O kBaHTU(HUIIUPOBAHHON CUCTEME PACIICTUICHUI UCYUCTICHUS
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AHHOTAIMSA

B nmanHOI cTaThe BBeACHA HOBas KBaHTI/I(bI/II_II/IpOBaHHaSI CUCTEMA BBIBOJAOB MCYHCICHUA
BBICKa3bIBaHUI M OHAa CpaBHCHA MO CJIOKHOCTAM BBIBOHOB C MHBIMU KBaHTI/ICI)I/II_II/IPOBaHHBIMI/I u
HCKBE[HTI/I(I)I/II_[I/IPOBEIHHBIMI/I CHCTeMaMH BBIBOJOB HCUMCJICHHUS BBICKA3bIBAHUI. I[OKEB&HO, qTo
BBEJEHHAs CHCTEMa: 1) MOJIMHOMHAJIbHO JKBHBAJICHTHA CBOCMY HCKBaHTI/I(I)I/II_II/IpOBaHHOMy
BapuaHTy, 2) HMECT DKCIOHCHIUAJIIBHOC YCKOPCHHC II0 JIMHAM BBIBOJIOB OTHOCHUTCIIBHO
HCKOTOPOI'O BapuaHTa KBaHTI/I(I)I/ILII/IpOBaHHOﬁ CHUCTEMBI pesomounﬁ. Tak xak CTpaTerusd nmouckKa
BBIBOJIOB B BBEJEHHOI CHCTEME OUCHb IpocCTa, T0O OHa MOKCT OBITH II0JIE3HA HE TOJHKO B JIOTHKC,
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a CIIeZIOBATENIbHO, MPH pa3paboTKaxX MCKYCCTBEHHOTO HMHTEIUIEKTa, HO TaKkKe B Takux cdepax,
KaKOBBI KOMITBIOTEPHASI OMOJIOTHSI U MEAUIIUHCKAS TUArHOCTUKA.

KiroueBble c10Ba: KBaHTU(DUIIMPOBAHHAS CHUCTEMa BBIBOJOB WCYHCIICHHS BBICKA3BIBAHMUIA,
cuctemMa OOOONMIEHHBIX pACIICIUICHWH, WIard BBIBOJA, JUIMHA BBIBOJA, OSKCIIOHCHIIMAIBHOEC
YCKOpEHHE.
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