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Abstract

The ordering of e-degrees (of total functions) is known to be isomorphic to
the ordering of 7-degrees. It is possible to form equivalence classes with respect to
=. and in the set of all functions (not necessarily total). The resulting e-degrees are
called partial degrees.

In H. Rogers’ Theory of Recursive Functions and Effective Computability [1],
a proof of the existence of a non-total partial degree is given along with a corollary
to this theorem.

The article contains a modification of the proof of the theorem given above,
which allows us to significantly strengthen the results of the corollary, namely to
prove that (3y)[ ¥ is not partial computable & P <; 0' & (VA)[f <. Y = f is
computable]] (in the above-mentioned corollary, it is noted that the constructed
function is only computably enumerable in 0").
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1. Introduction

Formal definitions of many concepts mentioned in the Introduction will be given in the Preliminary
section.
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The concept of enumeration reducibility was introduced in the works of Friedberg and Rogers
[2], Myhill [3] and Selman [4]. Informally, A € w (where w is the set of the nonnegative integers),
is enumeration reducible to B € w if there is a uniform way to compute an enumeration of A4
from an enumeration of B.

If a partial degree contains at least one total function, it is called total. The total degrees
therefore constitute a subordering of the partial degrees.

The structure of enumeration degrees D,, is an upper semi-lattice with the least upper bound
induced by effective join operation A@B and the least element O,, the degree of all computably
enumerable sets. The relationship between the following three reducibilities: e-reducibility,
T-reducibility and relative computable enumerability (c.e. in) is expressed using a proposition

A<; B © A®A is Bce. © ADA <, BOB.

Myhill [3] used this relationship to define a natural embedding of Turing degrees into
enumeration degrees. He proved that the embedding ¢: Dy - D,, defined by
W(dr(A)) = d.(A @ A), preserves the order and the least upper bound.

Research in the field of e-degrees has continued over the past decades. Among the latest
works, we can note [5], [6], and [7].

In [1], the existence of a nontotal partial degree is proved, along with a corollary of this
theorem. In the Results section of this article, a modified proof of the aforementioned theorem is
presented, which substantially strengthens the results of its corollary.

2. Preliminaries

Notations. In this section, we shall give the necessary definitions. We shall use the notions
and terminology introduced in Rogers [1], and Soare [8].

We deal with sets and functions over the nonnegative integers w = {0,1,2, - }.
Let ¢, be the e'" partial computable function in the standard listing (see [8], p.15, p.25).

If ACwande € w,let ®4(x) = d,(4:x) = {e}*(x) (see [8], pp. 48-50).

Xa denotes the characteristic function of A which is often identified with A and written
simply as A(x).

We write @, s(x) =y if x,y,e < sandy isthe output of ¢, (x) in < e-steps of the Turing
program P,. If such a y exists, we say @, ¢(x) converges, which we write as ¢, (x) |, and
diverges (@, s(x) T), otherwise.

Similarly, we write @, (x) | if @, (x) | forsome s, and we write @,(x) | =y if @ (x) |
and @,(x) =y, and similarly for ¢, (x) {=y (see [8], pp.16-17).

W, = dom @, = {x: @.(x) {}.

max (A) denotes the maximum element of a finite set A4, if 4 is not @, and 0, otherwise.
f I x denotes the restriction of f to arguments y < x, and A [ x denotes y, [ x.

Definition 1. 7(x,y) = %(x2 + 2xy + y2 + 3x + y).

It is known that 7 is a computable one-one mapping of w X w onto w.
We shall use (x, y) as an abbreviation for t(x, y).
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Definition 2. Given x, y, <x, y> is the ordered pair consisting of x and y in that order.

Let R be any 2-ary relation. We say that R is a single-valued relation if for every x there
exists at most one z such that <x,z> € R.

A set A is single-valued if {<x,y> [(x,y) € A} is a single-valued relation.

Definition 3. Let K4 = {x|®4(x) 1} = {x|x € W4 1}. K4 is called the jump of A and is denoted
by A’ (read as “A prime”) (see [8], p. 53).

Definition 4. 0 = deg(@) = {B|B is computable},
0' = deg(@") , where @' =7, K (see [8], p. 54).

Definition 5. a) Let 4 join B, written A @ B be {2x |x € A}u{2x + 1 |x € B}.
b) Let {Ay}ye, be any countable sequence of sets. Define the infinite join

é {Ay}yEw =arn Ux, V) x €A, & y € w} (see [8], p. 54).
Definition 6. (i) A sequence of (total) functions {f;(x)} converges (pointwise) to f(x), written
f = limg, f;, if forall x, f;(x) = f(x) fora.e. s (all but finitely many s).
(i) A modulus (of convergence) for { f; }se,, 1S @ function m(x) such that for all s, if
s = m(x), then f,(x) = f(x) (Hence, f;,(x) = f(x).) The least modulus is the

function m(x) = (us)(Vt = s)[ fs(x) = f(x)].
(iti)  The sequence {f; (x)}sew, 18 computable if there exists a computable function
f(x,s) such that f,(x) = f(x,s) forall x, s.

Let { f; (x)}seq, be a computable sequence. Note that the least modulus is computable in any
modulus. If f = limg, f; and m is any modulus, then
f<rm
because fn(x) = f(x). However, m <; f usually fails even for the least modulus.
Remarkably, if f has c.e. degree, then m < f holds for some modulus m of a particular
computable sequence, as we prove in the following lemma.

Modulus Lemma. If' 4 is c.e. set and f < A, then there exists a computable sequence { f; }sce
such that lims fg = f, and a modulus m of { f }sew, Which is computable in A. (see [8], p.56)

Let us present the Limit Lemma along with its proof, since it will be used in proving our
theorem.

Limit Lemma. For any function f, f < A’ iff there exists an A-computable sequence { f; }sew
(i.e., an A-computable function f(x,s) = f.(x)) such that f = limg f..

Proof. (=). Let f <; A’. Now A4'is c.e. in A. Hence, the A-computable sequence {f;}se, €Xists
by the Modulus Lemma relativized to 4.
(). Let f = lim, f;. Define
Ay = {s:@AD [s= t & f(x) # ferea(X)]}.
Now A, is finite, and B = @, A, = {(s,x):s € A,}is ¥} and hence 4-c.e,,s0 B < A’

Thus, given x, we can B-computably (and therefore 4'-computably) compute the least modulus
m(x) = (us)[s & Ay] Hence, f <r mA<;BOA<; A"

In particular, f <; 0" ifand only if f = lim f; for some computable sequence { f; }sc(,- This
will be the most useful characterization of degrees below 0. Since not all degrees below 0’ are
c.e., the following corollary selects those that are.

Corollary of the Limit Lemma. A function f has c.e. degree iff f is the limit of a computable
sequence { fs }sew, Which has a modulus m < f (see [8], p.57).
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Definition 7. Given a finite set A = {xy, x5, -+, X} }, where x; < x, < -+ < x, the numbery =
2%1 + 272 + .- + 2%k is the canonical index of A. Let D,, denote a finite set with canonical index
y,and D, denote @.

Definition 8. A € w is an enumeration reducible to a set B € w (A <, B) if there is c.e. set W,
such that A = {n|(3e)[(n,e) € W, & D, S B]}, where D, is the e-th finite set in canonical
enumeration.

Thus, any z and any B determine a unique corresponding 4 such that A <, B via z, namely
{x |3w[{x,u) € W, & D, < B]}. Hence, each z determines a total mapping from 2% to 2*. We
call such mappings enumeration operations and denote the operator corresponding to z as @, (see
[1], pp.146-147).

Every T-degree (of total functions) is a subcollection of some partial degree. If a partial degree
contains a 7-degree (of total functions), we call it a total degree (see [1], p. 280).

3. Results

In [1], Theorem13.XVIII is proved (announced by Medvedev [9]): (3Y) [P is not partial
computable & (Vf)[f <. Y = f is computable]] and the Corollary is presented: (3y) [ is not

partial computable and 1 is computably enumerable in 0" and (Vf)[f <, Y = f is
computable]] (see [1], pp. 280-281).

Let us prove the following Theorem.
Theorem 1. (3Y) [ is not partial computable & P < 0' & (V)[f <. Y = f is computable]].

Proof. Note that we identify functions with their graphs and define f <, g if ©(f) <. 7(g).
Recall that @, (7(1))) is the enumeration operator of index n. We use the following notation in
the proof.

®,,(y) abbreviates @, (t()). (Thus &, (1) is a set that may not be single-valued.) If @, (V)
is single-valued, we also abbreviate T~1(®, (¥)) as ®,,(1). (Thus, for example, we can write
f=e =@ = ©,(¥)].)

At each stage s, we construct finite segments ,,, ; such that max(dom zpm,s) <s &m<s.
The function ¢ will be called a finite segment if the domain of  is finite. A finite segment will
be called a monotone extension of  if
Y < ¥ and (Vx) (Vy)[[x € domypandy € dom(P- )] = x < y].

The construction will be such that for any s (Vm <s)(Vn<s)[m<n = y,s is a
monotone extension of Y, ;] and for any m (3s0)(Vs = $o) (Wms = Ym,s, =afn Pm) (since
the construction uses the finite injury priority method).

We prove the theorem by obtaining the desired 1 as the union of a sequence of finite segments
Yo, P4, -+, where m < n = 1,, is a monotone extension of Y,,,.

Note that the construction is such that the set {(m, S, %, Ym s (x))| Yms(x) 1} is computable.

As a result, we will have (Vx)(3mg)(3so)(Vm > my)(Vs > sg) P I x =P, 5 T x.

In the process of constructing 1, stages are implemented to ensure that for any n, the function
@, (v) will ultimately be either computable or nontotal (if @,,(y) is single-valued).

Let us denote the number n by Q(k),if k =2n+1V k =2n+ 2.

For any n, the finite segment 1, is intended to work with the operator @) or the function

Pon)-
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Let v;(n) = max{k| k < n & the actions taken (at stage n) concerning the function ¢, are
not canceled} (i.e., remains valid at stage n).

Let v,(n) = max{k| k < n & the actions taken (at stage n) concerning the operator ®; are
not canceled} (i.e., remains valid at stage n).

If the actions taken (at stage n) concerning the operator @, (the function ¢;,) are canceled,
we will briefly say, @, (@) is canceled (at stage n).

Stage 0. Let i, = 0
Stage 2n + 1. See whether there exists k < Q(v,(2n)) such that
Pr2n(max (dom Par2n) + 1) T & @ap2ne1(max (dom Py z,) +1) 1.
If so, then let k be the least of such numbers and p, = max(dom 1/)2,(0,2,1).

We set Yo r1,2n+1 = Yarg2n U {<Po» @iy 2n+1(P0) +1>}.
Then we cancel ¢, for all k > k, and ®, forall k > k.

If not, then let G = max({q |, is not canceled at stage 2n} and p; = max(dom Pyg5.12n) + 1.

We set Yz5412n+1 = W2g+1,2n U {<p1, 0>}
(Stage 2n + 1 ensures that 1 # ¢,,; therefore, 1) cannot be partial computable.)

Stage 2n + 2. Substage (a). See whether there exists k < Q(v,(2n + 1)) such that there exists
a monotone extension Y of the segment Y n+1 such that CID,((IIJ) is not single-valued and
max(dom Al])) <2Z2n+2.
If so, then let k, be the least of such members. Then we set Yy an42 = Y and go to stage

2n + 3. (In this case, the actions taken (at stage 2n + 2, substage (a)) concerning the operators
and functions with numbers greater than k are canceled.) If not, we go to substage (b).

Substage (b). Notation. Div(m,s) means that there exist a number y and monotone
extensions ! and )? of the segment ,, 5 such that the values of the functions @, () and
¢2m(1/~)2) as partial functions, are defined and unequal for the argument y & max(dom T/)l) <
s+1 & max(dom{? ) < s+ 1.

See whether there exists a number k < Q(v,(2n + 1)) such that Div(k,2n + 1).

If so, then let k; be the least of such numbers. Then set Yy, 242 = Yi, 2n+1U{<z, 0>}, where z
is the least of the numbers greater than all the elements of the domains of both the segment 3p*
and the segment 2. (In this case, the function @, , (1) must be undefined at y, for, otherwise,
1 could be used together with 1 or else Y2 to provide a monotone extension 1 of the segment
Y, 2n+1,> for which @, () is not single-valued, contrary to the result of substage (a)). In this
case, the actions taken (at stage 2n + 2, substage (b)) concerning the operators and functions with
numbers greater than k4, are canceled.

If not, then let Yy 2n42 = Wi, 2n+1- (In this case, @y, () must be computable, if total, for it
can be effectively computed by enumerating all monotone extensions of Yy, -n41 and putting
them through @, .)

Note that according to the construction, at any stage », the transition from the finite segment
constructed at stage » to the finite segment that will be constructed at stage n+1 occurs effectively
(uniformly over n).

As already noted, we have defined ¥ =45, U;e,, P; (the definition of 1; is given above).

Set S, ={s|@mM)(s<m & Y, ' x # Y1 I 2)}.

Then S, is finite, just like A, in the proof of the Limit Lemma.

B =dfn @ Sx = {(S,X)I S Esx}'
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B is a computably enumerable set (similarly, the set B in the proof of Limit Lemma is
A- computably enumerable).

Then, given x, we can B -computably (and therefore 0'- computably ) compute the function
M(x) =45 {Ux|s € S,}. Hence, Y < M < B<; 0. m

4. Conclusion

In the above theorem from [1], when constructing the function 1), to achieve nontotality of
deg. (), actions were performed on the e-operators @, (for any e), only one stage was sufficient
to complete the necessary actions on each specific e-operator. In the proof given in this article, a
much larger (but finite) number of stages may be required to complete the necessary actions on
each specific e-operator.

This modification of the proof allows us to substantially strengthen the results of the corollary
of the mentioned theorem. The results are presented in more detail in Section 3.
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Ny inunnu) dwubwljh wunhdwih gnnipjutt wmyugnygh b
wn dwutiwljh wunhdwih tEpjuyugnigsh pniphuguut
wunhdwih dwupht

Uputu 2. Unljugjul

22 2UU. Pudnpluwnpljuyh b wjunnduwnwugdwi ypnp kdubph htunhunnin, Gplwt, Zujwunwut
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Udthnthnud

Zujmuth Lk np  wdbkunmpbp npnpdws Pniuljghwibph ewunhfwuubph
Jupquynpnudp hqnunpd E 7Fwunhdwtubph jupquynpdwip: Zbwpwynp L pun =.-h
hwdwpdbpnipjutt guubtp Adlwynpl] twb pnnp $niuljghwubph (Wupuwnhp sk
wdbkunipbp npnodws) wdpnnonipjut dke: Unugdws e-wunhdwbtbpp wtduibyniud ki
dwublwh wunmhdwbbabp:

Z.  [kgkpuh  «FhEYnipuphy  Pniulghwbbph  wbunipmit b EpLlunpy
hwpquwplbjhnipnity gpponud [1] tpuyugdws b ny mnunnwy dwubwljh wunhdwh
gnnipjul wyugnygp b wyn yundwt hknbnipniup:

SYu;  hnpjuénud  wkpuyugws L Jbkpnhhoyjmy  phnptidh wwwgnygh
Unnhdhughwl, hsp pnyp £ mmwjhu bujuinpbt mdtnugub] ptnptdh hknbnipyut
wprynibplbpp, wyuhtipt’ wwwgmgl, np GY)[P-u dwubwbh bwpdupyth sk &
Y <r 0'& (YVA[f <. ¢ = f hwpqupltih E]] (Epntpjuy htinbnipyub ke tpynid £ np
Junnigws Pnruljghwt punudbiup hwoquplbihnpbt pdupyth £ pun 0'-h):

Pwbmh punkp’ e-hwiqhgmd, dwutwlh wunhfwl, dwubwlh hwodupllih
dniuljghw, pjniphtiqqut wmunmhLwt:

O 10Ka3aTenbCTBE CYIIECTBOBAHUS HETOTAIIbHOW YaCTUYHOW CTETIEHU U
O THIOPUHT'OBOM CTENICHU MPEACTABUTENS 3TOM YACTUYHOW CTEIICHU

Apcen A. Moxkansia

Wucturyt npobnem undopmatuku u aromatusanun HAH PA, EpeBan, Apmenus
e-mail: arsenmokatsian@gmail.com
Annoranus

W3BecTHO, YTO YHOPSIOYEHHUE e-CTENEHEeH BCIOAY OMpeAeNieHHBIX (YHKIUH H30MOPQHO
ynopsodeHuo 7-creneneit. MoxHO 00pa30oBaTh KIacChl IKBUBAJICHTHOCTH OTHOCUTEIBHO =, U
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B COBOKYITHOCTH BceX (DYyHKIMHU (HEe 003aTeNbHO BCIOLY OIpeaesieHHbIX ). [lomyueHHbIe Tpu 3TOM
e-CTEIIEHU Ha3bIBAKOTC YACMUYHLIMU CIENEHAMU.

B kuaure X. Pomxkepca, “Teopus pexypcuenvix (hyHkyuil u 3¢hpghekmunas ebluucaiumocms ”,
[1] maHo noKa3aTenbCTBO CYHIECTBOBAHUS HETOTAJIBHOM YAaCTUYHOM CTENEHU U MPUBEICHO
CJIEICTBUE U3 HTOU TEOPEMBIL.

CraTbs COEPKUT MOIU(PUKAIMIO TOKA3aTEIbCTBA TEOPEMbI, IPUBECHHOM BBIIIE, KOTOpast
MO3BOJISIET CYIIECTBEHHO YCHJIMTH pEe3yJbTaThl CIEJACTBHA, a MMEHHO JI0Ka3aTh, YTO
(FY)[dyukuusa Y He sBIseTcs yacTHYHO pekypcuBHOM & Y <; 0" & (V)[f <. Y =
byHKUUA f pexypcuBHA|]| (B NMPUBEICHHOM BBIIIE CIEACTBUHM OTMEYEHO, YTO IOCTPOCHHAs
GYHKLMSA BCEro JIMIIb PEKYPCUBHO MEpEeYrCcIuMa OTHOCUTENBHO ().

KuarueBsble cji0Ba: e-cBOIMMOCTb, YaCTUYHAS CTETICHb, YACTUYHO PEKYypCHBHAS (PYHKIIHS,
THIOPHHIOBA CTETICHb.



