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Abstract

Thermal image classification is critical in various applications, particularly fault
detection and monitoring systems such as photovoltaic (PV) modules. However, a
common challenge in these fields is the limited availability of large-scale, labeled ther-
mal image datasets. To address this, color image augmentation is widely adopted in
machine learning to artificially increase the size and diversity of training datasets, im-
proving model generalization. Traditional augmentation techniques, such as geometric
transformations, provide some benefits but may fail to fully capture the unique char-
acteristics inherent in thermal images, which often have lower contrast and different
noise patterns than visible spectrum images. So, we argued we need to develop a
novel augmentation technique for thermal imaging, where data collection is costly and
time-consuming.

Our research proposes a novel offline augmentation technique guided by quality
metrics to enhance the performance of thermal image binary classification models. By
leveraging domain-specific quality metrics, such as image clarity, thermal contrast, and
noise levels, we optimize the oversampling process for thermal datasets. For example,
starting with a dataset of x images, we generate y additional thermal images, resulting
in a total of x + y images used to train the deep learning classification framework.
Using a dataset of PV module defects, we demonstrate the effectiveness of our quality
metric-based oversampling strategy across several state-of-the-art image classification
networks. Our approach outperforms traditional augmentation methods regarding clas-
sification accuracy and robustness, including geometric transformations and standard
image enhancement techniques. The practical implications of our research are signif-
icant, as it provides a more effective and efficient way to improve model performance
for thermal imaging tasks, mainly when data availability is limited.
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1. Introduction

Thermal image classification plays a pivotal role in various critical applications, including
fault detection and monitoring of photovoltaic (PV) modules, building inspections, and
medical diagnostics [1, 2, 3, 4]. The unique advantage of thermal imaging lies in its ability
to capture infrared radiation, making it highly effective for detecting heat signatures and
identifying invisible anomalies to standard visible-light cameras. However, the development
of robust deep learning models for thermal image classification remains challenging due to
the limited availability of large-scale, labeled thermal image datasets [5]. Acquiring and
labeling thermal data is time-consuming and costly, which hinders the creation of models
capable of generalizing well across diverse real-world conditions.

This paper aims to develop a novel quality metric-based augmentation technique for fault
detection and monitoring systems such as photovoltaic (PV) modules. Our proposed method
addresses the challenges of data scarcity and enhances model performance by introducing
thermal-specific augmentation strategies.

Data collection is essential when public computer vision datasets are insufficient, as ap-
plications such as fault detection and monitoring systems often require more data. However,
data collection for computer vision training is both expensive and labor-intensive. Image
annotation, which involves creating ground-truth data for model training, requires costly
human labor. Building large image datasets is incredibly challenging due to the rarity of
events, privacy concerns, the need for industry experts for labeling, and the significant ex-
pense and manual effort required to record visual data. These challenges underscore the
need for data augmentation in computer vision.

Data augmentation is a set of techniques that enhance the size and quality of machine
learning training datasets, enabling the training of better deep learning models. The most
difficult challenge is the generalizability of deep learning models, which refers to the perfor-
mance difference of a model when evaluated on previously seen data (training data) versus
data it has never seen before (testing data). Models with poor generalizability have overfitted
the training data.

To address the limitations posed by small datasets, data augmentation techniques have
become essential in computer vision [6, 7]. Traditional augmentation methods, such as
geometric transformations (e.g., rotations, flips, and scaling) and brightness adjustments,
artificially increase the size and diversity of training datasets. These techniques expose
models to a broader range of variations, enhancing their ability to generalize across unseen
data. However, traditional augmentations are unsuitable for thermal images due to their
distinct characteristics [8]. Thermal images typically exhibit lower contrast, unique noise
patterns, and temperature-specific information that differ from visible-spectrum images. As
a result, augmentation strategies for visible-light images may distort critical thermal features
like temperature gradients and hot spots, reducing the effectiveness of the models.

Recent studies have proposed various methods to improve thermal image classification
for PV module fault detection by tailoring augmentation techniques to thermal data. For
instance, Korkmaz et al. [5] introduced an efficient fault classification method using trans-
fer learning and a multi-scale convolutional neural network (CNN). They applied geomet-
ric transformations and brightness adjustments to enhance their dataset, achieving notable
improvements in classification accuracy. Similarly, Pamungkas et al. [8] proposed a novel
method using a coupled UDenseNet architecture for efficient solar panel fault classification.
Their approach combined geometric transformations with generative adversarial networks
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Fig.1. Examples of augmented thermal images: (a) geometric transformations (horizontal,
vertical, and both flips), (b) histogram equalization, and (c¢) brightness adjustment.

(GANS) to generate additional synthetic thermal images, significantly boosting model per-
formance. In another approach, Tang et al. [9] focused on automatic defect identification
in PV panels using infrared (IR) images captured by unmanned aircraft. They utilized his-
togram equalization to enhance the contrast of the thermal images, improving the clarity of
defects and anomaly detection. Some of these augmentation techniques, including geometric
transformations, brightness adjustment, and histogram equalization, are depicted in Fig. 1.

In this paper, we address the limitations of traditional augmentation methods by propos-
ing a novel offline augmentation technique guided by thermal-specific image quality metrics.
These quality metrics, including clarity, thermal contrast, and noise levels, are tailored to
the unique characteristics of thermal images. By optimizing the augmentation process based
on these metrics, we generate additional samples that more accurately reflect real-world
variations in thermal data, improving the robustness and generalization of thermal image
classification models.

To validate our approach, we experiment with a PV module defect dataset [10] and apply
quality metric-based oversampling to augment the training set. We evaluate our method
across several state-of-the-art deep learning architectures, including CNNs like AlexNet [11]
and ResNetb0 [12], as well as transformer-based models such as Swin Transformer [13].
These networks, described in Table 1, are commonly employed for classification tasks and
serve as a benchmark for our proposed augmentation technique. Our experimental results
demonstrate that our method not only outperforms traditional augmentation techniques
but also significantly improves classification accuracy and model robustness across diverse
networks.
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Table 1: Popular Networks for Image Classification

Network Description Number of
Parameters
AlexNet [11] is a CNN architecture that won the 2012 ImageNet competition, | 61 million
pioneering the use of deep learning for large-scale image classification. It
features five convolutional layers, followed by three fully connected layers.
AlexNet’s use of ReLLU activation and dropout was instrumental in improving
performance.

PyTorch model: alexnet

ResNet50 [12] introduces residual connections that enable the training of | 25.6 million
much deeper architectures by addressing the vanishing gradient problem.
ResNet50, with its 50 layers, became one of the most influential models in
computer vision, especially for transfer learning.

PyTorch model: resnet50

SqueezeNet [14] is a compact CNN architecture that achieves AlexNet-level | 1.2 million
accuracy with 50x fewer parameters, thanks to its ”fire modules,” which consist
of a squeeze layer and an expand layer to reduce the number of parameters
while maintaining accuracy.

PyTorch model: squeezenetl_1

ShuffleNetV2 [15] is designed for lightweight mobile and embedded vision | 2.3 million
applications. It uses group convolutions and a channel shuffle operation to
reduce computational complexity while maintaining high accuracy, making it
highly efficient for mobile devices.

PyTorch model: shufflenet_v2_x1_0

MobileNetV3 [16] is the third version of the MobileNet family, designed for | 2.5 million
high efficiency in mobile and embedded applications. It uses a combination of
inverted residuals and squeeze-and-excitation (SE) modules to balance speed
and accuracy.

PyTorch model: mobilenet_v3_small

Swin Transformer [13] is a hierarchical transformer model that applies | 28 million
attention within shifted windows, enabling both local and global information
capture. It is scalable and effective across different vision tasks.

PyTorch model: swin_v2_t

The key contributions of this work are summarized as follows:

e We introduce a novel augmentation method guided by a thermal-specific quality metric,
which enhances the performance of thermal image classification models.

e We demonstrate the effectiveness of our approach using a PV module defect dataset,
showing that our method improves classification accuracy and model robustness.

e We evaluate our method on various state-of-the-art deep learning architectures, includ-
ing both CNN-based and transformer-based models, showcasing its general applicabil-

ity.
The remainder of the paper is structured as follows. Section 2. presents our proposed
quality metric-based augmentation method, followed by experimental setup and results in

Section 3. Finally, Section 4. concludes the paper with a discussion of future work and
practical implications.



116 Enhancing Thermal Image Classification with Novel Quality Metric-Based Augmentation Techniques

2. Proposed Method

In this study, we propose a domain-specific augmentation technique tailored for thermal
images, particularly addressing the challenges presented by the unique characteristics of
infrared data. Traditional image augmentation methods, such as geometric transformations
and basic image enhancement, often fail to adequately improve thermal image datasets. This
is primarily due to the inherently low contrast and distinct noise patterns in thermal images,
which differ significantly from those in visible spectrum images. As a result, conventional
approaches do not fully capture the structural and qualitative nuances required for effective
thermal image classification.

To overcome these limitations, we leverage the Block-wise Image Entropy (BIE) qual-
ity metric [17], a no-reference Image Quality Assessment (IQA) technique. No-reference
IQA methods are particularly important in scenarios where ground truth image qual-
ity ratings are unavailable, as they provide an objective measure of image qualtrongti-
rakul2022unsupervisedity without the need for reference images [18, 19]. This is crucial
in thermal imaging, where acquiring high-quality, well-labeled datasets is often difficult and
costly [20]. By incorporating both local and global entropy characteristics, BIE offers a more
comprehensive assessment of thermal image quality than traditional methods. It evaluates
the image based on entropy-driven criteria, which better aligns with the noise characteristics
and structural patterns of thermal data, thus ensuring that the augmented images maintain
high levels of interpretability and detail.

The BIE is defined as:

Lsn (aM!(I%)® x In M'(I*)) SD(I)

BIE(I)= ADP(I
() 1) 1+ 250 E(I%) 1 + L3, SD(I*)

(1)

where n represents the number of blocks into which the image is divided, E(I*) is the entropy
of each block, and SD(I*) is the standard deviation of each block. The term ADP(I) denotes
the Average Deviation Percentage, and M’(I) is the modified modulation. These are defined
as:
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where A([I) is the average pixel value of the image, L = 255 represents the maximum pixel
value in an 8-bit image (adjustable depending on the image format), and Iyayx, Imin are the
maximum and minimum pixel intensities, respectively. The entropy F(I) is calculated using
Shannon entropy [21], which is defined as:

ADP(I)=1-—

N
E(I) = =3 _ P(i)log, P(i), (3)
i=1

where E(I) represents the entropy of the image I, N denotes the total number of possible
intensity levels, and P(7) is the probability of occurrence of intensity level ¢ within the image.
Shannon entropy provides a measure of information content and randomness in the image,

making it a crucial component of the BIE metric for evaluating thermal image quality.
Measure-based enhancement techniques have been widely employed in the literature to
improve image quality and performance in machine learning tasks, particularly in scenarios
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Fig. 2. Example of BIE-based contrast enhancement on thermal images of defective PV modules.

where image contrast and structural detail are crucial [22, 23, 24]. To augment the thermal
images, we apply a multi-step process based on contrast enhancement using the BIE quality
metric:

1. Contrast Enhancement: Each thermal image undergoes parametric contrast
stretching to enhance the overall contrast. The stretching parameters are selected
from predefined ranges.

2. Optimization Using BIE: The low and high stretching parameters are optimized
within the ranges [0, 150] and [150, 255], respectively, using the BIE quality measure.
The goal is to maximize the BIE value for each image.

3. Augmentation with Best and Second-Best Images: The images with the highest
BIE value and the second-highest BIE value are selected and added to the augmented
dataset, alongside the original image.

This method generates augmented versions of thermal images that have improved con-
trast and higher entropy, which are better suited for training deep learning models.

Fig. 2. illustrates the results of our BIE-based contrast enhancement for a defective
thermal image from the Infrared Solar Modules dataset [10]. The original image, along with
the images corresponding to the best and second-best BIE values, are shown.
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Table 2: Description of augmentation setups and sets

Augmentation Description Training set Validation set Test set
A0 No augmentation 16,000 2,000 2,000
Al Geometric Transformations (GT) 64,000 8,000 8,000
A2 GT + Histogram Equalization 80,000 10,000 10,000
A3 GT + Brightness Adjustment 96,000 12,000 12,000
A4 GT 4+ BIE-based Oversampling 80,000 10,000 10,000

The results highlight how BIE-guided contrast enhancement significantly improves image
quality by enhancing local contrast and emphasizing key structural features in the thermal
image.

3. Results

In this section, we present the performance results of our proposed augmentation technique
and the deep learning models evaluated on the PV module defect classification task. The
dataset consists of 20,000 infrared images of solar modules, evenly divided between non-
defective (No-Anomaly) and defective modules. The defective class includes a variety of
faults, such as Hot-Spots, Soiling, Diode failures, and Cell anomalies [10]. The deep learning
models used in our experiments, including CNN-based architectures and a transformer-based
model, are described in Table 1. As detailed in Table 3., The augmentation setups were
applied to the original dataset, which was randomly split into 80% training, 10% validation,
and 10% test sets. The number of samples in each set after augmentation is also listed in
Table 3..

For training the models, we used the following hyperparameters. Each model was trained
for 30 epochs using the Cross-entropy loss function. We optimized the models using the
stochastic gradient descent (SGD) optimizer with an initial learning rate of 0.001 and mo-
mentum set to 0.9. The batch size for all experiments was set to 32. To enhance training
efficiency and mitigate overfitting, we employed a learning rate scheduler, specifically the
StepLR, with a step size of 10 and a gamma of 0.5 to reduce the learning rate after every 10
epochs.

Additionally, the input images were resized to meet the requirements of each network
before training and validation. For instance, images were resized to 227x227 for AlexNet
and 224x224 for ResNet50.

To evaluate the performance of the models, we used four standard classification met-
rics: accuracy (Acc), precision (Pr), recall (Rec), and specificity (Sp). These metrics were
calculated based on the following equations:

TP+TN

Accuracy (Acc) = 70 +TN+FP+FN W
TP

Precision (Pr) = TPLFP (5)
TP

Recall (Rec) = ————— ©)

TP+ FN
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Table 3: Quantitative results for each deep learning model trained on five different augmen-
tation techniques. The table presents accuracy, precision, recall, and specificity for both the

test and validation sets.

Dataset Test Validation
Aug Method | Acc Pr Rec Sp Acc Pr Rec Sp

A0 86.85 88.83 86.90 93.31 | 85.80 88.26 85.81 92.79
B Al 90.88 91.85 90.91 95.37 | 89.28 90.75 89.28 94.57
% A2 90.39 91.34 90.42 95.11 | 89.62 90.90 89.63 94.73
= A3 88.32 89.61 88.35 94.02 | 87.83 89.52 87.84 93.81

A4 93.21 92.62 94.05 96.56 | 92.53 92.02 93.54 96.22
- A0 89.70 89.92 89.72 94.61 | 89.30 89.89 89.31 94.45
D Al 92.20 92.28 92.21 95.95 | 91.41 91.56 91.42 95.54
= A2 91.99 92.01 91.99 95.83 | 91.28 91.36 91.28 95.45
QG? A3 88.33 88.48 88.35 93.83 | 87.38 87.64 87.38 93.31

A4 93.66 93.06 94.12 96.75| 93.16 92.57 93.76 96.51
2 A0 88.10 88.98 88.13 93.83 | 88.30 89.30 88.31 93.96
z Al 88.42 88.73 8R8.41 93.91 | 88.66 88.80 88.66 94.01
§ A2 88.41 88.47 88.40 93.86 | 88.06 88.12 88.06 93.66
=) A3 86.17 86.46 86.18 92.63 | 85.71 86.06 85.71 92.37
N A4 91.34 90.89 91.09 9547 |91.71 91.22 91.63 95.68
§ A0 89.95 90.19 89.97 94.75| 90.30 90.77 90.31 94.98
ho Al 92.35 92.39 92.36 96.03 | 91.75 91.90 91.75 95.72
% A2 91.44 91.57 91.45 95.55|90.54 90.73 90.54 95.07
EES A3 90.69 90.83 90.70 95.14 | 89.96 90.20 89.96 94.75
7 A4 93.72 93.19 93.90 96.77 | 93.07 92.51 93.36 96.43
g A0 92.65 92.66 92.65 96.19 | 91.20 91.26 91.20 95.41
ko Al 93.04 93.05 93.03 96.39 | 92.26 92.27 92.26 95.98
E A2 92.40 92.41 9240 96.05|92.06 92.09 92.06 95.87
Lg A3 91.72 91.80 91.73 95.70 | 91.42 91.52 91.43 95.54
= A4 94.59 94.18 94.64 97.23 | 94.08 93.59 94.27 96.96

A0 88.85 88.91 88.84 94.10 | 88.90 88.90 88.90 94.12
- Al 91.69 91.82 91.68 95.68 | 91.38 91.41 91.37 95.50
= A2 91.60 91.74 91.59 95.64 | 90.96 90.98 90.96 95.27
e A3 89.59 89.63 89.60 94.52 | 89.41 89.54 89.41 94.43

A4 93.85 93.38 93.95 96.84 | 93.67 93.13 93.94 96.75

TN
Specificity (Sp) = TN EP

(7)

In these equations, T'P represents true positives, T'N represents true negatives, F'P
represents false positives, and F'N represents false negatives.
The results for each deep learning model, trained using five different augmentation tech-
niques, are summarized in Table 3. The confusion matrices for AlexNet and Swin Trans-
former are shown in Fig. 3.
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Fig. 3. Confusion matrices for binary classification using (a) AlexNet and (b) Swin Transformer,
showcasing performance across different augmentation types on the test set.

As observed, the setups without augmentation and those using only brightness adjust-
ment yielded the lowest performance metrics across all models. The setups employing ge-
ometric transformations and histogram equalization achieved moderate scores, indicating
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some improvement but still lacking compared to other methods.

However, our proposed contrast enhancement augmentation, combined with geometric
transformations, outperformed all other approaches. This setup achieved the best perfor-
mance, particularly on MobileNetV3, with an accuracy of 94.59%, precision of 94.18%, recall
of 94.64%, and a specificity of 97.23% on the test set. Swin Transformer also performed well
with our augmentation technique, though its results were less impressive than those of other
augmentation setups.

In conclusion, the proposed contrast enhancement method not only improves model per-
formance but demonstrates its effectiveness in enhancing the robustness and classification
accuracy of thermal image datasets, particularly when data availability is limited.

4. Conclusion

This paper presented a novel augmentation technique for thermal image classification, par-
ticularly for fault detection in photovoltaic modules. Given the challenges of limited thermal
image datasets, traditional augmentation methods like geometric transformations and sim-
ple enhancements are often inadequate. To address this, we proposed a new augmentation
method that uses thermal quality assessment-based contrast enhancement to enrich the
dataset. Our approach significantly improves the diversity of the training dataset, leading to
enhanced classification accuracy and robustness across several state-of-the-art models. The
results demonstrate the effectiveness of the new augmentation over conventional methods,
making it a valuable tool for thermal imaging applications with constrained data.

Future work will focus on improving classification accuracy by exploring thermal-specific
deep-learning models and further refining our augmentation technique to optimize perfor-
mance.

References

[1] M. W. Akram, G. Li, Y. Jin, X. Chen, C. Zhu, X. Zhao, M. Aleem, and A. Ahmad,
“Improved outdoor thermography and processing of infrared images for defect detection
in pv modules,” Solar Energy, vol. 190, pp. 549-560, 2019.

[2] R. H. F. Alves, G. A. de Deus Junior, E. G. Marra, and R. P. Lemos, “Automatic fault
classification in photovoltaic modules using convolutional neural networks,” Renewable
Energy, vol. 179, pp. 502-516, 2021.

[3] T. Trongtirakul, S. Agaian, and A. Oulefki, “Automated tumor segmentation in ther-
mographic breast images,” Mathematical Biosciences and Engineering, vol. 20, no. 9,
pp. 16786-16806, 2023.

[4] M. d. F. O. Baffa and L. G. Lattari, “Convolutional neural networks for static and
dynamic breast infrared imaging classification,” in 2018 31st SIBGRAPI Conference on
Graphics, Patterns and Images (SIBGRAPI), pp. 174-181, IEEE, 2018.

[5] D. Korkmaz and H. Acikgoz, “An efficient fault classification method in solar photo-
voltaic modules using transfer learning and multi-scale convolutional neural network,”
Engineering Applications of Artificial Intelligence, vol. 113, p. 104959, 2022.



122

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Enhancing Thermal Image Classification with Novel Quality Metric-Based Augmentation Techniques

Z. Yang, R. O. Sinnott, J. Bailey, and Q. Ke, “A survey of automated data augmen-
tation algorithms for deep learning-based image classification tasks,” Knowledge and
Information Systems, vol. 65, no. 7, pp. 2805-2861, 2023.

W. Li, C. Chen, M. Zhang, H. Li, and Q. Du, “Data augmentation for hyperspectral
image classification with deep cnn,” IFEE Geoscience and Remote Sensing Letters,
vol. 16, no. 4, pp. 593-597, 2018.

R. F. Pamungkas, I. B. K. Y. Utama, and Y. M. Jang, “A novel approach for efficient
solar panel fault classification using coupled udensenet,” Sensors, vol. 23, no. 10, p. 4918,
2023.

C. Tang, H. Ren, J. Xia, F. Wang, and J. Lu, “Automatic defect identification of pv
panels with ir images through unmanned aircraft,” IET Renewable Power Generation,
vol. 17, no. 12, pp. 3108-3119, 2023.

M. Millendorf, E. Obropta, and N. Vadhavkar, “Infrared solar module dataset for
anomaly detection,” in Proc. Int. Conf. Learn. Represent, 2020.

A. Krizhevsky, “One weird trick for parallelizing convolutional neural networks,” arXiv
preprint arXiw:1404.5997, 2014.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770—
778, 2016.

Z. Liu, H. Hu, Y. Lin, Z. Yao, Z. Xie, Y. Wei, J. Ning, Y. Cao, Z. Zhang, L. Dong,
et al., “Swin transformer v2: Scaling up capacity and resolution,” in Proceedings of the
IEEE/CVEF conference on computer vision and pattern recognition, pp. 12009-12019,
2022.

F. N. Iandola, “Squeezenet: Alexnet-level accuracy with 50x fewer parameters and;j 0.5
mb model size,” arXww preprint arXiw:1602.07360, 2016.

N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines for
efficient cnn architecture design,” in Proceedings of the European conference on computer
vision (ECCYV), pp. 116-131, 2018.

A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu,
R. Pang, V. Vasudevan, et al., “Searching for mobilenetv3,” in Proceedings of the
IEEE/CVF international conference on computer vision, pp. 1314-1324, 2019.

H. Ayunts, A. Grigoryan, and S. Agaian, “Novel entropy for enhanced thermal imaging
and uncertainty quantification,” Entropy, vol. 26, no. 5, p. 374, 2024.

K. Panetta, C. Gao, and S. Agaian, “No reference color image contrast and quality
measures,” [FEFE transactions on Consumer Electronics, vol. 59, no. 3, pp. 643-651,
2013.

H. Ayunts and S. Agaian, “No-reference quality metrics for image decolorization,” IEFEE
Transactions on Consumer Electronics, vol. 69, no. 4, pp. 1177-1185, 2023.



H. Ayunts 123

[19] H. Ayunts and S. Agaian, “No-reference quality metrics for image decolorization,” IEEE
Transactions on Consumer Electronics, vol. 69, no. 4, pp. 1177-1185, 2023.

[20] T. Trongtirakul and S. Agaian, “Unsupervised and optimized thermal image quality
enhancement and visual surveillance applications,” Signal Processing: Image Commu-
nication, vol. 105, p. 116714, 2022.

21] P. Bromiley, N. Thacker, and E. Bouhova-Thacker, “Shannon entropy, renyi entropy,
Y.
and information,” Statistics and Inf. Series (2004-004), vol. 9, no. 2004, pp. 2-8, 2004.

[22] S. S. Agaian, B. Silver, and K. A. Panetta, “Transform coefficient histogram-based
image enhancement algorithms using contrast entropy,” IEEE transactions on image
processing, vol. 16, no. 3, pp. 741-758, 2007.

(23] A. M. Grigoryan and S. S. Agaian, “Image processing contrast enhancement,” Wiley
Encyclopedia of Electrical and Electronics Engineering, pp. 1-22, 1999.

[24] A. M. Grigoryan, A. John, and S. S. Agaian, “Color image enhancement of medical
images using alpha-rooting and zonal alpha-rooting methods on 2d qdft,” in Medical
Imaging 2017: Image Perception, Observer Performance, and Technology Assessment,
vol. 10136, pp. 325-333, SPIE, 2017.

Qtupiwjhl wwwmytpltph quuwjupgiwl puptjuwynid npwlh
swhnnnphyGtiph Yypw hhdGwo nyjwGtinh wtjugdwa
(inp dtipnnny

<pwy 3nt. UyniGg

Gplwlh whnwlywl hwiwuwpuG, Gpluwb, <ujwuunwi
e-mail: e-mail: hrach.ayunts@ysu.am

Udthnthnid

QundwjhG wwwulytpliph nuwuwlwpgnuip Juplunp  GuwGwynipniG niGh wmwppbp
ninpunGtpnd, dwulwynpuwytiu, wluwppnipniGGiph hwjymbGwptpdwl L dnGhunphlgh
hwdwlwpgtipnid, hGswhupp GG Pnnnqupyubughl (b9d) dnnmybtpp: UjGniwdtGuyGhy,
wju nnpubtpmd plphwlnp dwpunwhpwytpp wyGwowyw), wlnnmwgywo otipndwjhl
wwwnytplGtiph wngjwiGtph hwjwpwoniGtiph vwhiwluwthwy hwuwlbhmpmGa t: Uu
fuGnhpp motim hwdwp dhptlwjwlwl nwunmgdwl k9 (wylnptlG plypmGJuo L
wwwnytpltiph wytjugnuin® wphtiunmwyuinptl dtowgltint nyjwGiph hwjuwpwoniGtipp
swhl nm pwquuqulnmpymbp” pupbpuyting dnnbGiph pGphwlpugnuip: UjuwinuywG
dtowgdwl dtpnnGtpp, hGywhuhp G0 Gpypwswthwiwl thnfuwytpynwdGtpp, wwihu GG
nnn? wnwybnipyntGGtp, vww)l upnn G0 swpumwugnit) otpdwyhG wuwwmybpnlGtphG plnpn)
Jmipwhwumnly hwwnlwbhyGepp, npnlp hwdwju nGhG wybh guwop YnGupwuwnm L mwppbp
wnuniyh dnnbGbp, pwl mbtuwbbh vytlunph quunybpltnpp: Ujuyhuny, dtlp wlnnd Glp,
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np whwp £ Quwyyh otpdwjhl yquumytnlGtph wytjugdwb (np dtpnn, pwlh np otipdwjhl
nyjw)Giph hwjwpwgpnuip dwjuuwwmwn k b dwdiwGwyunmwn:

Utn htnwgnuumpymGi wnwowpymyi L wyjwiltph wybjugiwbG Gnp wnbfuGhluw,
nnl wnwolnpnynid L npuyh swhnpnphsGtpny® 9tipdwjhG wwwybpltph Gpymuwlywd
nuuwlwpqiwb dnnbGtph wpyniGuytunnipymin pwupépwglbint hwiwp: Oquugnpotinyg
whpnyphlG hwwnny npuwyh  swihnpnghsGhp,  hGswhuhp GG wwwybph  wwpgnipymGp,
otipdwjhlG YnGupwuwmp L wnimyh dwlwppuylbpp, dblp owwmhihquglnd Glp
otindwjh( wnyjwGiph hwjwpwoniGtiph hwpumwgiwl gnpoplpwgnp: OphGwy, z pwlwlyny
wwwnybnGtph nyjuGtph pwqujihg ujuwo® dblp untinomu tlp y jpwgnighy otpdwjht
wwwybpnltpn, hGsh wpyynilpnid pphwlmp wedwdp 2 4+ y pwlwyny wwwmytpnltn
L0 oqumuwagnpoymu funpp nwunigiwl nuwuwupqiwl dnnbp mumguw6bnt  hwdwp:
Oquwgnpotingy dd. innnuyh ptpmpnilitph hwjwpwonil, dtlp gmgunpmud Glp dbp
npwih swthdiwl Yypw hhdGwo nyjuwlGtph wytpugiwli dtthnnh wpymGwytnnpnilp
th pwlh dwiwGwlwyhg wwwuytplGtph guwuwljwpqiwl gulgtpmu: Utp dnnbtgnudp
gbpwquignd £ wjwlnuywl dtowgiwlG dhpnnlGtphG’ Juuywo nuuwlunpgqiw
62qnuunipjul b Juynilnipjwl htw, GGpwnjw) Gpipwywithwyuwl hnfuwlbpymdiGbpp L
wwwmybtph pwpbjuyiwl vnwinupun nbuGhyuitpp: Ubp hbtnwgnumpjul gnpoGujub
httmlwGpGtpp GQwlwlwih GG, pwGh np wjl wywhnynd £ wytth wpyyniGuwybnm thyong
otipdwjhlG wwwmytnltnph pulnhpGtpnd dnnbGtph juunwpnnqujulnipyniip pupbpuytnt
hwdwn, hhiGuwywlnd, tpp nyjwitph hwuwGbihnipyniGp vwhdwGwhwy k:

Pwlwih puntp’ wyjuGtiph hwjwpwonth dhowgnid, wwwlytph npuyh qGwhwwmnid,
otindwjhl yuwwumytnltnh puuwlywpgnud:

YAyulleHrue KAACCU(PUKALIUU TEIIAOBEIX U300pa’keHUu C
HCIIOAB30BaHUEM HOBEIX TEXHUK ayIrMEHTAallUU Ha OCHOBE
METPHUK KadyeCcTBa

I'pau FO. AroHig

EpeBaHcKkuil rocypapCcTBeHHEIN YHUBepcuTeT, EpeBaH, ApMenusa
e-mail: hrach.ayunts@ysu.am

AnHoTanuys

Khaccucukanma TeNAOBBIX H300pa’keHHWM HMeeT pelllaiolllee 3HaueHUe B
Pa3AMYHBIX IIPUAOKEHUSAX, OCOOEHHO B CHCTeMax OOHApy’KeHUs HeHCIIPAaBHOCTEU
YU MOHUTOPMHIE, TaKUX KakK @QoTrosrekrpuueckue (PV) wmopyau. OpHako
pacrnpocTpaHeHHOMN IIPOOAEMOM B 3TUX OOAACTIX SIBAIETCS OTPaHUYeHHAas AOCTYIITHOCTD
KPYIIHOMAaCHITaOHBIX aHHOTUPOBAHHBIX HAOOPOB AQHHBIX TEMAOBBIX H300pa>keHUM.
YToOBl pemnIuThb 3Ty NPOOAEeMY, B MAIlIMHHOM OOYYEHUM IIUPOKO HIPUMEHSEeTCs
AOIIOAHEeHMEe U300pa’keHUM AN UCKYCCTBEHHOTO YBEAWUEHHS pa3Mepa U pa3Hoo0pas3us
oOy4aronux HabOpOB AQHHBIX, UTO yAyYIIaeT 000OIIeHre MoAeAel. TpaAuIMOHHEIE
METOABI AOIIOAHEHMY, TaKue KaK reoMeTpuyecKue IIpeoOpa3oBaHusd, 00eClieduBaioT
HEKOTOphle MPEUuMYIecTBa, HO MOTYT He IIOAHOCTBIO YAABAUBATh YHUKAAbHbIE
XapaKTePUCTUKY, MPUCYIIHE TENAOBU3UOHHBIM U300pakeHUusIM, KOTOpPble YacTo
MMeIOT OoAee HU3KYIO KOHTPACTHOCTb M ApyrHMe IIyMOBBIe IIQTTEPHEBL, 4YeM
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M300pa’keHusI BUAUMOrO CIleKTpa. [1o3ToMy MBI yTBep>KAaeM, YTO HaM HEOOXOAMMO
pa3paboTaTh HOBBIM METOA AOIIOAHEHUN AAS TENIAOBU3MOHHBIX M300pa’kKeHUM, TAE
cOOp AQHHBIX SBASIETCS AOPOTOCTOSIIVMM W OTHMMAaeT MHOT'O BPEMEHM.

Harre nccaepoBaHMe IpepraraeT HOBBIM METOA AOIIOAHEHUS, PYKOBOACTBYIOIIUNICS
IIOKA3aTeAIMU KAaueCTBa, AAS ITOBBIIIEHUS IPOMU3BOAUTEABHOCTH MOAEAEU OMHAapHOU
KAACCU(UKAIIUU TEMAOBBIX M300pakeHUM. VICoAb3yd crienquuuHBIE AAS AOMEHa
II0OKa3aTeA KayecTBa, TaKHue KaK YeTKOCTh M300pa>keHus, TEIIAOBOU KOHTPACT U
YPOBHHU IIyMa, Mbl ONTHUMHU3UPYEM IIPOIECC AOIIOAHEHUS AAS TEMAOBBIX HaOOpOB
AQHHBIX. Hanpumep, HaumHad ¢ Habopa AQHHBIX U3 & MN300pa>keHUY, MBI
reHepupyeM Y AOIOAHUTEABHBIX TEIAOBBIX W300pa’KeHWN, B PE3yAbTaTe 4Yero
IIOAYYaeTCd B OO0IIeN CAOKHOCTH T + Yy U300pa>keHuN, UCIIOAB3YEeMBIX AT OOy4eHUd
dperMBOpKa Kraccu(ukanum raAyOOKoro oOydeHusd. Mcnoab3dyd HAaOOp A@HHBIX
Ae(eKTOB (POTOINEKTPUUECKUX MOAYAEH, MBI AEMOHCTpUpPyeM 3PEPEKTUBHOCTh
Halllel CTpaTerud ayrMeHTalid Ha OCHOBE METPUKM KayeCTBa B HECKOABKHUX
COBPEMEHHBIX CeTAX KAacCU(PUKanMM n300pa’keHMM. Hamr mopxopa HNpeBOCXOAUT
TPAAUIIMOHHBIE METOABI A@yTMEHTAIud C TOYKU 3PEeHMs TOYHOCTM W HAAEKHOCTH
KAACCU(UKAIIUY, BKAIOYAS reOMeTpruYecKre MpeoOpa30BaHUsA U CTAHAAPTHBIE METOABI
VAyUllleHusd u300pakeHuU. [IpakTuueckue IMOCAEACTBUS HAIIEr0 HCCAEAOBAHUSA
3HAQUUTEABHBI, IOCKOABKY OHO oOecrieumBaeT Oonee 3(PPEKTUBHBIU U AEUCTBEHHBIU
CIIOCO0 YAYYIIEHUS IIPOU3BOAUTEABHOCTH MOAEAU AAd 33AaU TEIIAOBUAEHUS, B
OCHOBHOM, KOTAd AOCTYIIHOCTH A@HHBIX OlPaHUYeHa

KAroueBele cAOBa: ayrMeHTaIusg Habopa AQHHBIX, OIfeHKA KaueCTBa U300pa>keHn!,
KAACCU(UKAIUSA TEIIAOBBIX U300pa>keHnU.
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