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Abstract

The problem of full-reference image quality assessment is considered based on the
application of the mathematical model of the Rice distribution. The gradient field of an
image is adequately described by the Weibull distribution, which allows one to effectively
analyze image properties, evaluate their similarity, classify them by quality, etc. In this
paper, an attempt is made to solve similar problems using the above-mentioned model,
relying, in particular, on additional properties of the Rice distribution associated with the
normal approximation of the latter. It is shown that the structural similarity measure used
in different problems is also applicable to the case of the Rice gradient field model. In
particular, images from the TID2013 database are experimentally studied. The modeling
results obtained from both the Weibull and Rice distribution models were compared using
the mean square and structural similarity measures, as well as the Mean Opinion Score
(MOS) values. It is shown that the types of distortions in these indicators are in complete
agreement, while for some other types, the Rice distribution model shows better results.
Keywords: Gradient magnitude, Weibull distribution, Rice distribution, Parameter
estimation, Image similarity, MOS.

Article info: Received 29 January 2025; sent for review 6 Febuary 2025; accepted 28
April 2025.

1. Introduction
Creating effective quality assessment methods is one of the most popular and applied tasks in the
field of image processing. The existing quality assessment methods are divided into two classes:

Full-Reference and No-Reference methods. The Full-Reference method assumes the presence of
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8 Full-Reference Image Quality Assessment Procedure Based on Rice Distribution Model

an initial reference image and a set of test images that differ from the reference due to the impact
of certain distorting factors on the reference. In this case, the task of quality assessment consists
of comparing the test and reference images using a pre-selected criterion.

No-reference methods do not assume the presence of a standard and the quality of the tested
image assessing using only the internal properties of the image. The literature devoted to methods
for assessing image quality is quite extensive. Of particular interest are methods that use the
properties of the human visual system (HVS), since the "final judge™ of quality assessment is a
person. These methods often include Mean Opinion Score (MOS) values obtained by experts for
images pre-distorted by different methods, which allows for checking the ability of the tested
method to assess image quality. For this purpose, researchers have created extensive image
databases accompanied by MOS assessments. Brief descriptions and links to dozens of such
databases are given in [1].

Previously, we proposed a method for assessing image quality based on statistical analysis
of the gradient field of an image [2]-[3]. In this case, the Weibull distribution model was adopted
to describe the set of gradient magnitudes. It is shown that this model allows for solving many
relevant applied problems. Thus, in [4], a Full-Reference algorithm for assessing image quality is
proposed using the TID2013 database of distorted samples [5], for which MOS values are also
given. The latter circumstance allows for assessing the quality of both the tested image and the
applied testing algorithm.

This paper attempted to supplement the proposed approach using other gradient field models.
The proposed method is based on the Rice distribution, which, unlike the Weibull distribution,
converges to a normal distribution with appropriate parameter values, thus creating additional
opportunities for adequate analysis and assessment of image quality.

The paper considers the following tasks:

*[ Modeling Weibull and Rice distributions with the ability to estimate parameters using
various methods.

[ Calculating the similarity of the original test image with distorted samples based on the
proximity of the parameter values of the original and distorted samples. Comparison and
analysis of the results obtained for both distribution models.

e[ Comparison of similarity values with the corresponding MOS values, comparing and
analyzing the existing discrepancies, and developing appropriate recommendations.

2. Research Methodology

The methodology involves modeling the Weibull and Rice distributions, calculating the
magnitudes of the gradients of the tested images, and estimating the parameters of both
distributions based on these data. In this case, the gradients are estimated using the Sobel operator.
The parameters of the Weibull distribution are estimated using the method of moments [3], and
the maximum likelihood method is used to estimate the parameters of the Rice distribution [6].
The experiments were conducted on images from the TID2013 database, which also contains other
auxiliary information. The MOS values, PSNR and W? image similarity measures were used to
compare the results.

The probability density function of the two-parameter Weibull distribution is defined by the

formula
n(x n-1 X n
f(x;A,n)==-]—=| exp—-|—| |, x=0,
(x;4,7) ﬂ,(lj p{ {/1”

where n >0 - Shape parameter, and A >0 - Scale parameter.
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The Rice distribution density is
—(+2 2
flatv,0) = Zewp (52) 10 (),

where I,(z)- modified Bessel function of the first kind of zero order.

Unlike the Weibull distribution, in the literature, it is customary to define the shape and scale
parameters in the Rice case as the following functions of the initial parameters v and o: Shape

2
parameter K = ;7 and Scale parameter Q = v + 2¢2. With the values of these quantities, we

can estimate the initial parameters of the Rice distribution using the formulas

KQ Q
V= |—, o= :
K+1 2(K+1)

It should be noted that in the field of signal processing theory and technology [7], an
important characteristic is the signal-to-noise ratio, which is determined by the expression ¢ =
v/o. Itis known that &—oo the Rice distribution tends to a normal distribution with parameters v
and o. Moreover, for & > 3, this approximation is quite acceptable. This means that under this
condition, we have K > 4.5, and the estimation of the parameters of the Rice distribution can be
performed by traditional statistical methods.

The similarity (closeness) of two images can be estimated by the degree of closeness of the
corresponding empirical Weibull or Rice distributions constructed from the set of magnitudes of
the gradients of the compared images. However, instead of nonparametric statistical criteria of
goodness of fit, we use a less accurate but simple measure [2], based on the closeness of the
parameter estimates of the of the distributions under study themselves according to the formula

W2 = min(n,,n,) min(k,4,)

max(n,,n,) max(x,,A,)

The resulting image similarity scores were then compared with the MOS scores using the

Spearman correlation coefficient. This measure is often conveniently assessed by visual analysis,
classifying their absolute values as equal to or less than one.

We have repeatedly and successfully applied the described method to various problems [3].

In particular, in [4], by analyzing the database data, the types of distortions for which the estimates

of the Weibull distribution parameters belonged to one or another class from those described above

were identified. In the present work, a similar analysis was carried out concerning the Rice

distribution data.

0<W?2<1.

3. Results of Modeling

Modeling was performed on all 3000 images of the database [5] simultaneously using both models.
By analyzing the modeling results, the types of distortion identified for which the Weibull model
leads to high or low values of the W2 correlation with MOS. The corresponding values obtained
using the Rician model are also recorded. It turned out those types of distortions, and chaotic
behaviour of W? estimates were observed using the Weibull model, while the situation is much
better using the Rician model. Of course, there may also be types of distortions for which the
behaviour of these estimates completely coincides. Examples of this kind are given below.

Example 1. Matching indicators. Let us consider the images 101_01 and 101_04 of the base.
Table 1 shows the calculation results.
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Table 1. Comparative results for images 101 and 104
W? W? . W? W?

10101 | PSNR | \weipul | Rician | MOS | 10204 | PSNR| \veipun | Rician | MOS
i01 01 1 | 36.50 0.92 0.92 | 551429 || i01 04 1 | 30.14 0.69 0.69 5.76190
i01 01 2 | 33.56 0.87 0.87 | 5.56757 || i01 04 2 | 29.26 0.55 0.55 5.47619
i01 01 3 | 30.48 0.79 0.78 | 4.94444 || i01 04 3 | 27.85 0.40 0.38 4.92857
i01 01 4 | 2751 0.68 0.66 | 4.37838 || i01 04 4 | 25.95 0.27 0.23 4.26829
i01_ 01 5 | 24.50 0.56 0.51 | 3.86486 || i01 04 5 | 23.61 0.18 0.13 4.00000

Visual analysis of the data in Table 1 shows that the nature of the change in the values of the
considered indicators for these images is generally the same. First, we note the monotonic decrease
in PSNR with an increase in the degree of applied distortion, which is a serious argument for using
this indicator in the absence of MOS-type data. In this case, PSNR can also be used to assess the
quality of the experiment to create MOS data. We also note the practical coincidence of the W?
values for the considered images and the Weibull and Rice distributions, despite some deviations
in the MOS series. However, as shown in [4], these patterns are not always observed, so several
similar examples with appropriate comments are given below.

Table 2 compares the calculation results for images i05 and i07, subjected to the same type
of distortion (Contrast change). As can be seen, PSNR decreases monotonically in both cases, and
W2 with the Rice distribution also decreases monotonically in the case of image i05_17. However,
deviations from monotony are observed for i0._17.

Table 2. Comparison of similarity scores with MOS scores

W2 W2 . W2 W2
105171 PSNR | \weibull | Rician | MOS || 10717 | PSNR | \veibunl | Rician | MOS
1 | 3351 | 009 0.79 53 1 3507 | 0.9 08 | 554545
> | 2892 | 085 | 074 | 682927 | 2 3028 | 084 | 077 | 64
3 | 2553 | 075 | 055 | 4025 3 2806 | 075 | 055 | 440476
4 | 2281 | 077 | 053 | 656008 | 4 2360 | 0.72 06 | 6.72727
5 | 1947 | 05 0.24 28 5 2200 | 05 0.25 | 3.34001

The MOS values do not decrease monotonically, as expected by the meaning of the
experiments, but the nature of the changes is similar for both images. This effect can be explained
by the peculiarities of the human visual system (HVS) that inadequately react to changes in image
contrast in one direction or another.

Thus, the results of Table 2 indicate some advantages of using the Rice distribution when
assessing image quality.

It is interesting to compare the calculation results for the same image with different types of
distortion. Table 3 shows the data for the i04 image with changes in brightness (Mean shift
(intensity shift)) and contrast (Contrast change). In this case, deviations from the monotony of the
similarity indices W2 with the Weibull model and MOS were observed, while W? with the Rician
model decreased monotonically, corresponding to the meaning of the experiment on creating the
T1D2013 database.
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Table 3. Comparison of ratings for different types of image distortion

W2 W2 . W2 W2
10416 | PSNR I \veibull | Rician | MOS || 10417 | PSNR | \weivun | Rician | MOS
1 3333 | 099 | 084 | 628571 1 3051 | 09 0.84 5
2 24.63 1 068 | 664286 | 2 2879 | 081 0.68 | 6.66667
3 2452 | 098 | 059 | 609524 | 3 2762 | 075 | 059 | 4.78049
4 1757 | 099 | 050 | 566667 | 4 2447 | 069 | 050 | 7.21429
5 1794 | 079 | 026 | 515385 | 5 2313 | 050 | 026 | 3.925

Similar results were obtained for images 121, i24 and several others from the same database
with the same types of distortions.

4. Conclusions

The problem of Full-Reference image quality assessment is considered based on applying the
mathematical model of the Rice distribution. The previously proposed technique is based on the
application of the Weibull distribution model and the measures of mean square and structural
similarity of images. In this paper, the properties of images from the TID2013 database are
experimentally investigated, evaluating and comparing their similarity indices according to the
Weibull and Rice models, as well as the MOS index. This shows that the applied measure of
structural similarity is also applicable to the case of the Rice gradient field model. It is also shown
that for types of distortion, these indices are in complete agreement, while for some other types;
the Rice distribution model shows better results.
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MuctutyT npobiem nadopmatuku u apTomatusamun HAH PA, Epesan, ApMmenus
2Poccuiicko-ApMaHCKHil yauBepeuteT, Epesan, ApMenus
SHaumonanpHbI IONUTEXHUYECKHH yHUBepcuTeT Apmenny, Epesan, ApMmenus
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AHHOTaANuA

PaccmaTpuBaercs 3agaua OlLEHUMBAaHUS KadyecTBa HM300paXKeHUsS METOJOM CpPaBHEHHUS C
JTAJIOHOM, OCHOBAaHHAs Ha NPUMEHEHUM MaTeMaTH4eCKOM Mojenu pacupeneneHus Paiica.
W3BecTHO, YTO TpaJUEHTHOE TI0JIe HU300pa)KeHHs] JOCTaTOYHO aJeKBATHO OMHUCHIBAETCS
pactpenenenueM BeiiOymia, uto mo3Boiser A(PQEKTUBHO aHAJIM3UPOBATh  CBOWMCTBA
M300pakKeHHH, OIEHUBATh UX CXOJCTBO, KIIACCH(HUITMPOBATh MO KauecTBY U Jp. B nanHoit padoTe
cleNaHa NOMbITKA pEIIaTh AHAJOTUYHBIE 3aJa4d 10 YHNOMSHYTOM MOJENH, pacCuMThIBas, B
YaCTHOCTH, Ha JOIOJIHUTENIbHBIE CBOWCTBA pactpeneneHus Paiica, cBs3aHHbIE ¢ HOpPMAaJbHBIM
npubimkeHneM nocienHero. [lokazaHo, 4YTO mpuMeHseMas B pasHBIX 3a7adax Mepa
CTPYKTYPHOTO CXOJCTBa NMPUMEHMMA M B Clydae pPaliCOBCKOW MOJEIW T'PaJUEHTHOro mnojsi. B
YaCTHOCTH, HKCHEPUMEHTAJIbHO MCCIENOBaHbl H300pakeHHss W3 6a3pl gaHHbIX 11D2013.
ConoctaBneHbl pe3ynbTaThl MOJEIMPOBAHUS, MOJYyYEHHBIE 10 MOJESAM pachpeeneHuit
BeiiOymnna u Paiica, ucnonb3ys Mepbl CpeIHEKBaIPATUIECKOTO M CTPYKTYPHOTO CXOJICTBA, & TAKXKE
3HaueHust dKcepTHHIX orieHOK (MOS). [Tokazano, 4To a1 onpeIeIEHHBIX TUIIOB HCKAXEHUH 3TH
MIOKAa3aTeIM HAXOAATCSA B IOJHOM COIVIACHM, B TO BpPEMs KakK JJIsl HEKOTOPBIX APYTUMX THUIIOB
MoJienb pacnpenenenus Paiica moka3pIBaeT Jy4line pe3yabTaThl.

KiroueBble cjioBa: MarHuTyja TpajaueHTa, pacmpesnerncHue BeiOymia, pacnpeneneHue
Paiica, orileHuBanme mapaMeTpoB, CX0ACTBO n3obpaxenuit, MOS.
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Abstract

This work addresses a source coding problem for one-way sources with correlated
outputs. In this scenario, one source output must be transmitted to the receiver within
a specified distortion level, similar to conventional source coding. Simultaneously,
the other source output must be kept as confidential as possible from the receiver
or a potential wiretapper. For this model, the rate-reliability-distortion-equivocation
function and the equivocation-reliability-distortion function are defined and analyzed.
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1. Introduction

The source coding problem in information theory focuses on the efficient encoding of infor-
mation generated by a source so it can be transmitted or stored with minimal redundancy.
The main goal is to represent the information as compactly as possible while still enabling
perfect or near-perfect reconstruction of the original message.

In lossy coding, some information is sacrificed to achieve greater compression. The re-
constructed data is an approximation of the original, acceptable when perfect fidelity isn’t
necessary. JPEG for images and MP3 for audio are examples of lossy coding methods. In
general, source coding is fundamental to efficient data transmission and storage in various
fields, including;:

e Digital communications (e.g., reducing bandwidth in cellular networks),
e Data compression (e.g., ZIP files, media codecs),
e Machine learning and statistics (e.g., feature selection and data encoding),

e Distributed storage systems (e.g., minimizing storage costs by reducing redundancy).

14
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Shannon rate-distortion function (RD) [1] shows the dependence of the asymptotically
minimal coding rate on a required average fidelity (distortion) threshold for source noiseless
transmission.

The source coding problem for a one-way communication system with correlated source
outputs was considered by Yamamoto in [2], where one of the outputs must be transmitted
to the receiver within a given distortion level as in ordinary source coding, while the other
source output has to be kept as secret as possible from the wiretapper (Fig. 1). The
rate-distortion-equivocation function (RDE) was defined and evaluated, which is the
minimum rate necessary to attain both the equivocation tolerance for the wiretapper and
the distortion tolerance for the receiver.

>

Source ) Encoder f | ' =f®Y) | Decoder g

Fig.1. One-way communication system with correlated source outputs.

Previously, Yamamoto [3] studied the source coding problem for cascade and branching
communication systems. Later in [4], he considered the RD problem for a communication
system with a secondary decoder to be hindered, where security is evaluated by the distortion
measure instead of the equivocation function used in [2]. RD problem related to security
setting is considered also in [5].

Another characteristic in source coding subject to a distortion criterion can be considered,
namely rate-reliability-distortion function (RRD) as the minimal rate at which the
message of a source can be encoded and then reconstructed by the receiver with an error
probability that decreases exponentially with the codeword length. The coding rate as a
function of the given distortion level and error exponent E has been studied for various
source models. We refer to [6], which in turn refers to the list of main results. In addition
to that list, it is worth mentioning [7], where the RRD region with partial secrecy under
the distortion criterion is considered, which is the generalization of the encoding problem
studied in [3].

Here we introduce and investigate the rate-reliability-distortion-equivocation func-
tion (RRDE) for the model from [2]. This function combines all aspects, including error
control and security. This framework is useful in scenarios involving secure and reliable data
transmission, where the goal is to balance the trade-offs among rate, reliability, distortion,
and secrecy. Balancing these four elements in a single framework is challenging because
improving one aspect often comes at the expense of another.

This setting of source coding with a secret component has many applications, including:

- sensor networks in distributed systems like 10T, to ensure that data is compressed,
securely transmitted, and reliably received,

- video and audio streaming to ensure high-quality, low-latency streaming with some
degree of security against unauthorized access,

- cryptographic communication systems need guidelines for encoding methods that bal-
ance data rate, fidelity, error protection, and secrecy.

Particularly, in [8], the utility-privacy tradeoff problem is modeled as source coding and
solved using the tool of RRD theory.
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In this paper, we introduce and study the set of E-achievable (R,A4 A.) triples.
As a consequence, we obtain the equivocation-reliability-distortion function and the rate-
reliability-distortion function.

The paper is organized as follows. In the next section, the main notations and definitions
are given. The main results are formulated in Section 3. The proof of the main theorem is
given in the Appendix. The paper is summarized in Section 5.

2. Notations and Definitions

The Discrete Memoryless Source (DMS) is defined as a sequence {(X;,Y;)}2, of discrete
independent identically distributed (i. i. d.) random variables X and Y, taking values in
finite sets X and ), which are the alphabets of messages of the source, respectively. Let

P ={P*(z,y),x € X,y € YV}

be the generating probability distribution of the source outputs (X,Y’). The source is
memoryless, which means that for N-length vector pairs x = (z1,22,...,2x5) € XY and

y = (1,92, yn) € YV
P*N(x,y) H P*(z,y).

The finite set X , different in general from X', is the reproduction alphabet at the receiver.
A code (fy, gn) is defined by a pair of mappings: a coding

fN : XN X yN - {17277L(N)}7

and decoding

~

gn - {]-a 2) ) L(N)} - X?
where L(N) is the code volume. Code rate is
1
R(fn,gn) = NlogL(N).
Throughout this paper, all log-s and exp-s are of base 2.
We consider the distortion measure

d: X x X —[0;00)

between source and reconstruction messages. The distortion measure for N -length sequences
is the average of the components’ distortions

1 N
X, X N g

The task of this system is to ensure restoration of one of the components of source
messages, i.e. X, at the receiver within a given distortion level A, and with a small error
probability. At the same time, the other source output Y has to be kept as secret as possible
from the receiver or wiretapper. This protection level is measured by the equivocation
rate, defined as

1
R. = NH(YU—’(N))?
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where H(Y|L(N)) is the conditional entropy [9]. In other words, the equivocation rate
indicates the receiver’s uncertainty about y given [.
We define the error probability of the code (fn,gn) as

e(fN7gN7P*aAd) =1- P*N(A)’
where A is the set of satisfactorily transmitted vectors:

A= {(Xv Y) : gN(fN(X7 y)) = }Ac? d(X, j\() < Ad}
Definition 1. The triple (R, A4, A,) is called E-achievable for given P*, E > 0,A, >
0,A. > 0, if for every € > 0,0 > 0, there exists a code (fy, gn) such that

1
NlogL(N) < R+e,

the error probability is exponentially small
e(va gn, P*7 Ad) < eXp{_N(E - 5)}

and the equivocation rate

R.> A, —e.

We denote by R*(F) the set of all E-achievable triples. We will consider the distortion-
equivocation F-achievable region:

An(B) = {(Ag, Ac) 1 (R, Ay, Ac) € RY(E) for some R > 0}.
Then the RRDE function is defined as

R (E, A4, A) = min R.
(R,Ag,Ac)ER*(E)

At last, the equivocation-reliability-distortion function (ERD) is:

I'"(E,Ay) = max A..
(BaD)ERR | 5 (B)

3. Formulation of the Results

Let
Q={QZz,y),zx e X,y Y,z € X}

be a conditional PD on X for given z, y.
Consider the following set of distributions P:

a(E, PT) = {P: D(P||P") < E},

where D(P||P*) is the KL-divergence [9].
Let Q(P, A4, A.) be the set of all conditional PDs Qp(Z|x,y) = @p, corresponding to
the PD P, for which the following conditions hold:

Ed(X,X) =Y P(z,y)Qp(2|z,y)d(z,2) < Ay, (1)

x?y7x

Hpq,(Y]X) > A..
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Then
Q(P,Ay) = U Q(P, Ag, Ae).

Hpqp(YIX)<Ac<Hpqp(Y)

The main result of this paper is presented in the following theorem.
Theorem 1. For given P*, every E > 0,

(R, Ad, Ae) . Ad Z 0, Ae 2 0,

i} <R.< i Hpo. (Y]X),
RY(E) = 0< R < PealB.Pr) Qe Pay) rer(Y1X)

R> ma min I XYV X
—Pea(E},(P*)QpeQ(P,Ad,Ae) rap(X,Y; X)

Corollary 2. The ERD function equals

I(E.A,;) = i H Y|X).
(B, Aa) PealB.Pr) Qred(Pay) rar(Y1X)

Corollary 3.

R(E,Ad, Ae) . Ad Z 0,

R*Ad,Ae(E> =
0 S Ae S F*(Ea Ad)

Corollary 4. The RRDFE function equals

A

(B, Ag, A,) = i I X, YV: X).
R( y L, e) PG%%%P*)QPGQ%,gd,Ae) P,QP( y 4y )

Corollary 5. The limits of the RRDE and ERD functions when E tends to 0, coincide with
the RDR and ED functions stated in [2]:

Lim R*(E, Ag, Ac) = B (Ag, Ac) = Q*PeglggglAme)lp*,Q;(X Y5 X).
lim [*(E, Ay) = I (Ay) = Hp- .. (Y]X).
M (B, Ag) =T"(Ag) = | max  Hp- g, (Y]X)

The proofs are given in the Appendix and are based on the method of types [10].

4. Conclusion

In this paper, we introduced and examined the set of E-achievable (R, A4, A.) triples. Ad-
ditionally, we defined and analyzed the ERD function and the RRDE. The limits of these
functions, when E tends to 0, coincide with the results from [2].
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Appendix

For the proof of Theorem 1, we will use the following modification of the Covering Lemma
[11], [6].

Lemma 1. Let for e > 0
J(P,Q) = exp{N(Ipo(X,Y; X) +€)}.
Then, for every type P and conditional type @), there exists a collection of vectors
{%; € TEo(X),j = 1. J(P.Q)},

such that the set
{EJYQ(X7Y|§(]>"] =1,.., J(P; Q>}7

covers T (X,Y) for N large enough, that is
N J(P,Q) N
TP (X,)Y)C | ThoX,Yx,).
j=1

We omit the proof of Lemma 1, since it is similar to the proof of Lemma 5.5. from [6].

Proof of the Theorem 1: First we shall show that
(Ra Ada Ae) : Ad 2 07 Ae 2 O;

0<R.,< min max HP’QP(Y’X>,

o T Pea(E,P*) QpeQ(P,Ag)

R (E)

U

R> i Ipo. (X, YV X
Z P opedti o) Trer( )

Let us represent the set of all source messages of length N as follows:

XNX:)}N: U 7;3N(X7Y>7
PEPN(XXY)

where Py (X x Y) is the set of possible types of pairs (x,y) € XN x YN,
Using the properties of types and the definition of the set «(E, P*) for each 6 > 0,

we can find the estimation of the probability of appearance of the source of types beyond
a(E + 4§, P*) as follows:

P*N< U TPN(X,Y)) = Y PV
Péal

E+4,P*) Pga(E+6,P*)

IN

XYl _ i
(N+1) exp{ NP@{%E;,P*) D(PHP*)} (2)

IN

exp{—NE — N§+ |X||Y|log(N + 1)}
exp{—N(E+§/2)}.

IN
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For each A, > 0, let us pick some types P € a(E + 9§, P*) and some Qp € Q(P, Ay, A,).
Let

C(Pa QP7 ) 7;3Qp X Y|X] U PQP X7Y|§(j’>a .] = 17‘](P7 QP)

J'<J

We define a code (fy, gn) for vector pairs of type P with the encoding:

J, when (x,y) € C(P,Qp,j), P € a(E + 6, P*),

fN(Xay> =
jo, when (x,y) € T (X,Y), P& a(E + 6, P*),

and the decoding
gn(J) = X;, g (Jo) = Xo,

where the number j, and the reconstruction vector X are fixed. Obviously, with such code,
an error occurs only when the number j, is sent.

According to the definition of the code and the inequality (1), for P € a(E + §, P*) and
Qp € Q(P, Ay, A¢) we have:

d(x,%;) = —Z (x, 2]x, X;)d(z, T)

= Y P(z,9)Qp(&lx,y)d(x, 2)

T,Y,&
= EP,de<X7X> < Ada j = 17J(P7 QP)

According to Lemma 1, the number of vectors X for a fixed type P and corresponding
conditional type Qp € Q(P, Ay, A,) is

Lpge(N) = exp {N(Ipg,(X,Y; X) +¢)}.
Then, taking into account that the number of types has a polynomial estimate [10]

( ) a PE()((EZ_H;,P*)QPEQ(P’A(%AE) PvQP( )

< (N + 1)V i N(Ipg,(X,Y; X :
<(N+1) e L opediin AE)eXp{ (Ipqp(X, Y5 X) + 6)}
Hence, the corresponding limit for the transmission rate is:

1 1
NlOngvQP(N) —€— N|X||y|log(N+ 1)<

< Ipo,(X,Y: X). 3
Pealbls b apetiasay P (O Y X) 3)

Taking into account the arbitrariness of € and 6 and the continuity of the information
expression (3), we get:

RY(E, Ay, A,) < i Ipo. (X, Y: X). 4
(B B0, Be) S L 100X 0re SR, 0 TP (Y5 X) )
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For this code, the equivocation rate can be evaluated as follows:

L(N)
NHOYILN) 2 5 X e (Vy € CP.QRNF (5 € CRQrg) (O
L(N)
— Y |- Y Py eCRQr ) e Pyl y € C(P.Qp )}
j= yx,yeC(P,Qp.j)

xP*{x,y € C(P,Qp,j)}.
For any y such that x,y € C(P,Qp,j) for some x

P*{X’y € C(P7 QP,])lY}P*{Y}
P{x,y € C(P,Qp,j)}

P{ylx,y € C(P,Qp,j)} =

> P{xyly}rPy} LX Prixlyptiy}
> o P{xy} > o P{xy}
xvyGC(PvQij) x,yGC(P,Qp,j)

As the probability of the pair (x,y) is constant within the same type, from (6) we obtain
that

P{ylx,y € C(P,Qp,j)} < | |ZQ&D();27>;‘;]’-)!
< eXp[N(HP,QP (X’YX)] Xp[—N(HRQP (Y|X> — 6)] (7)

= (N + 1)V exp[N(Hpg, (XY |X)] ~
Then, from (5), (7) and (2) we obtain that

SHY|L(V) >

L(N) )
FX YT Py € CPQe i HHReVIX) 0

y:x7yeC(P7QP7j)

xP*{x,y € C(P,Qp,j)}
L(N) A
= P{x,y € |J C(P,Qp,j)}(Hpg,(Y|X) —¢)

j=1
> (1 - exp{—N(E +6/2)})(Hpo,(Y]X) — o).
For N large enough, we obtain that
R.> Hpo,(Y|X)—e> A, —c (8)

According to (2), (4) and (8), we state that the triple (R, Ay, A¢) is E-achievable.
Now we pass to the inverse part, let us prove that:

(Ra AdyAe) : Ad > OyAe > Oa

§ <R, < %
RA(E) € § 0= TS il o, 28, TR (1)

R > i Ipo. (X, YV: X
Z X opedti 4, Trer( )
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Let € > 0 be fixed. Consider a code (fn, gn) for each blocklength N with (R, A4, A.) E-
achievable triple. We must show that for some Qp € Q(P, Ay, A.) the following inequalities
hold for N large enough:

1 A
N log L(N) +¢€> Peg%%fcp*) Ipg,(X,Y; X), 9)
1 R
N HYILN)) —e < PEQ}EI}P*)HP,QP(YIM (10)

Let A’ be the complement of the set A. The following statement is true:
ANTY X)) = [T )| = AN T Y]
For P € a(E — €, P*)

PNANTY(X,Y))

ANTEY] = =y
< exp{N(Hp(X,Y) + D(P||P"))} exp{—N(E - €)}
< exp {N(Hp(X.Y) — o)}
Hence,

ANTY XY = (N + 1) MPlexp {NHp(X,Y)} — exp {N(Hp(X,Y) — )}

exp{Ne} 1)

(N +1)IxIVT (11)

— e (N(H(X.Y) - 0}
> exp {N(Hp(X,Y) —€)}.
For each x,y € ANTA(X,Y) corresponds a unique vector % such that
% = gn(fn(x,y)) and %€ Tpo(X|x,y).

Let us divide the set of all vectors ‘Aﬂ T (X, Y)‘ into subsets by conditional types @ p.
The class having maximum cardinality for given P, we denote by

(AN T2 (x, Y)DQ .

P

According to the number of conditional types @, for sufficiently large N, we have:

ANTHEY)| < W+ )MPH(ANTY (G Y))),

P

< exp{Ne/2} (ANTH (X)) (12)

Qp
Let

D= {f{ : gn(fn(x,y)) = %, for some (x,y) € AT (X,Y) ﬂﬂg]yQP(X,Yb“c)} :
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From definition of the code |D| < L(N), then
(ANTF XY < S| YR)

Qr %€D

< L(N)exp{NHpg,(X,Y|X)}. (13)

From (11-13) follows R
L(N) = exp{N(Ipg,(X,Y; X) =€)}

for each P € a(E — ¢, Px) and some Qp for which Epg,d(X,X) < Ay, because X,y € A.
From achievability follows that

A~ < CHIYIL(N)) < Hrg, (Y]X)

So Qp € Q(P, Ay, Ae) and inequalities (9) and (10) are valid. Theorem 1 is proved.
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Abstract

In this survey, we explore the broad applications of Information Theory in Machine
Learning, highlighting how core concepts like entropy, Mutual Information, and KL-
divergence are used to enhance learning algorithms. Since its inception by Claude
Shannon, Information Theory has provided mathematical tools to quantify uncertainty,
optimize decision-making, and manage the trade-off between model flexibility and
generalization. These principles have been integrated across various subfields of Machine
Learning, including neural networks, where the Information Bottleneck offers insights into
data representation, and reinforcement learning, where entropy-based methods improve
exploration strategies. Additionally, measures like Mutual Information are critical in
feature selection and unsupervised learning. This survey bridges foundational theory with
its practical implementations in modern Machine Learning by providing both historical
context and a review of contemporary research.. We also discuss open challenges and
future directions, such as scalability and interpretability, highlighting the growing
importance of these techniques in next-generation models.
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1. Introduction

The intersection of Information Theory (IT) and Machine Learning (ML) has become increasingly
pivotal in advancing the state of the art across a wide range of subfields. IT, formalized by Claude
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Shannon in his seminal 1948 work [1], introduced foundational concepts like entropy, which
measures the uncertainty or disorder of a system, and Mutual Information (MI), which quantifies
the amount of information one variable contains about another. These principles have profound
implications in ML, particularly in optimizing algorithms, managing uncertainty, and improving
decision-making processes.

In the context of ML, models often grapple with the bias-variance trade-off, striving to
balance flexibility with generalization. Information-theoretic techniques such as minimum
description length [2] provide an elegant way of navigating this trade-off by minimizing the
complexity of models while maintaining accuracy. Similarly, maximum entropy models [3]
leverage entropy to derive distributions that reflect uncertainty in the absence of prior knowledge,
making them useful in many predictive models.

The impact of IT on ML is far-reaching:

o1 In neural networks, the Information Bottleneck (IB) method offers a theoretical framework
for understanding how deep networks compress and transmit information through their
layers [4].

e[| Reinforcement learning employs entropy-based regularization to enhance exploration
strategies, helping agents avoid local optima and discover better policies [5].

e[| Feature selection relies on MI to identify the most relevant variables while discarding
redundant or irrelevant data, which is crucial for high-dimensional datasets [6].

o1 Unsupervised learning techniques such as autoencoders and variational autoencoders rely
on information-theoretic measures like KL-divergence to ensure that latent representations
capture the essential structure of data [7].

As the field of ML continues to evolve, information-theoretic methods remain central to
the development of robust and efficient models. Recent advancements have brought renewed
attention to these techniques, particularly in addressing the challenges of scalability,
interpretability, and privacy in deep learning systems. The IB theory, for example, provides
insights into how models generalize and perform in real-world tasks by analyzing the flow of
information between inputs and outputs [8]. Moreover, information-theoretic approaches have
been increasingly employed in cutting-edge fields such as quantum ML, where quantum IT
principles are applied to create more powerful algorithms [9].

This survey aims to provide a comprehensive overview of the recent developments, current
applications, and future directions of IT in ML. This investigation will provide future good basis
for bridging the gap between foundational theory [10] and cutting-edge research.

The paper is organized as follows: in the next section main concepts of IT are described.
Main IT tools applied in ML are discussed in Section 3. Particular emphasis is placed on the 1B
framework in Section 4. Section 5 discusses the challenges and limitations of IT in ML. The paper
is summarized in Section 6.
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2. Useful IT Concepts

Entropy: Measuring Uncertainty

Entropy is the cornerstone of IT, introduced by Claude Shannon in 1948 [1], and is a measure
of the uncertainty or randomness inherent in a random variable or a probability distribution [11].
In ML, entropy plays critical role in quantifying the amount of unpredictability in data, making it
a crucial tool for optimizing algorithms and decision-making processes.

For a discrete random variable X with a probability distribution P(X), where X can take
values {x, x5, ..... , X, } with probabilities {p(x1), p(x2), ..... , p(x,)}, the entropy H(X) is
defined as:

HX) = =X p (x)log p(xy),
where:
o[ 1p(x;) is the probability of accurrence of the outcome x;,
e[ 1log is the logarithm base 2, as entropy is typically measured in bits.

The formula represents the expected number of bits required to encode the outcomes of X
given their probabilities. Entropy achieves its maximum value when all outcomes are equally
probable (maximum uncertainty) and its minimum value when one outcome is certain (no
uncertainty).

Conditional Entropy and Joint Entropy are extensions of this concept. Conditional Entropy
H(X | Y) quantifies the uncertainty of X given that Y is known, while Joint Entropy H(X, Y)
captures the combined uncertainty of two random variables.

HIXIY) = =) pG) ) pGInlogply),

YEY XEX

H(X,Y) =—Xyey Zxex P(x,¥)logp(x,y).

Mutual Information: Quantifying Shared Information

MI measures the amount of information shared between two random variables, quantifying
how much knowing the value of one variable reduces uncertainty about the other. Formally, the
MI between two random variables X and Y is defined as:

x.y)
](X; Y) = H(X) - H(X I Y) :Zer ZxEX plgx;:zy)_

MI can be thought of as the reduction in uncertainty about X when Y is known. Unlike
correlation, which captures linear relationships, M1 detects any kind of dependency between the
variables, making it more robust for applications like feature selection [6]. In ML, Ml is used to
rank features based on their relevance to the target variable, allowing models to focus on the most
informative inputs. For example, in feature selection, Ml helps to identify and remove irrelevant
or redundant features, significantly improving model performance by reducing overfitting in high-
dimensional spaces.

KL-Divergence: Measuring the Difference Between Distributions
Kullback-Leibler Divergence (KL-Divergence), also known as relative entropy, is a measure of
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how one probability distribution differs from a second, reference distribution. For two probability
distributions P and @, the KL-Divergence from Q to P is defined as:

DiL(PIIQ) = Txex P(x)log 22

KL-Divergence is non-negative and equals zero when the distributions are identical. Unlike
traditional distance metrics, it is asymmetric, meaning Dy, (P||Q) # Dk (Q]|P).

KL-Divergence is particularly useful in tasks where we approximate a complex distribution
P with a simpler distribution @, such as in variational inference [7].

In variational autoencoders, KL-Divergence is used to measure how close the learned
latent variable distribution is to a prior distribution, such as a standard normal distribution. This
ensures that the learned representations are regularized and maintain structure during training.

Cross-Entropy: Optimizing Classification Models

Cross-Entropy is closely related to KL-Divergence, but is more commonly used in
classification problems. While KL-Divergence measures the divergence between two probability
distributions, cross-entropy quantifies the total number of bits needed to encode a distribution P
using another distribution Q, cross-entropy is given by:

H(P,Q) = —Xxex p(x)log q(x).

In ML, cross-entropy loss is widely used as a loss function for classification tasks, particularly for
models that output probability distributions, like softmax classifiers. It measures how well the
predicted probabilities (from model Q) align with the true distribution (actual labels, P).
Minimizing cross-entropy encourages the model to assign high probabilities to the correct classes.

For binary classification problem, the cross-entropy loss can be written as:

L= —[ylogp+ (1 —y)log(1—-p)]

where y is the true label (0 or 1), and p is the predicted probability of the label being 1.

Maximum Entropy Principle

The Maximum Entropy principle suggests that, when faced with uncertainty, the best
distribution to choose is the one that maximizes entropy, subject to any known constraints. This
principle underprints maximum entropy models, often used in areas like natural language
processing [12]. These models choose the distribution that remains as uncertain as possible (i.e.,
has the highest entropy) while still satisfying the constraints imposed by the available data.

The principle encourages generality and reduces assumptions, making it useful for creating

unbiased models when prior knowledge is limited.

3. Overview of IT Tools for ML

The application of IT concepts, such as entropy, MI, KL-divergence, and cross-entropy, has
significantly advanced ML methodologies. These tools enable effective feature selection, model
optimization, regularization, and performance evaluation. Below, we explore how these principles
are utilized in practical ML tasks.
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Feature Selection and Dimensionality Reduction

One of the most prominent applications of Ml is in feature selection. In high-dimensional
datasets, identifying the most relevant features for the model is crucial to improve performance
and reduce overfitting. MI helps in selecting features that share maximum information with the
target variable while avoiding redundant or irrelevant features. The Max-Relevance and Min-
Redundancy algorithm is a widely used feature selection technique, that maximizes MI between
features and the target variable while minimizing redundancy among the selected features [6]. This
ensures that the selected features are both informative and diverse. In [6], MI was applied to gene
selection for cancer detection. This approach identified the genes most relevant for distinguishing
between cancerous and non-cancerous cells, reducing the dataset’s dimensionality while retaining
the most predictive features. This process significantly improved the performance of classification
algorithms, such as Support Vector Machines, by focusing on the genes that contained the most
meaningful information about the cancer type. Here, Ml I(X; Y) is used to quantify the
relationship between the input features X and the target label Y, ensuring that the selected features
contribute significantly to the predictive power of the model.

Building upon MI-driven feature selection, [13] proposed a fast binary feature selection
method using Conditional MI. This approach refines MI-based selection by conditioning on
already-selected features, ensuring that each additional feature contributes new, independent
information to the model. The efficiency of this method enables rapid selection from datasets with
tens of thousands of features, making it highly suitable for large-scale applications in computer
vision and pattern recognition. Additionally, [14] explored MI-based feature selection techniques
tailored for non-Gaussian data distributions. Their work introduced new feature selection and
visualization algorithms that address challenges posed by high-dimensional, non-Gaussian
datasets. By leveraging information-theoretic measures, their method improves both
interpretability and feature selection performance in complex data environments, making it
particularly useful in scientific and industrial applications, where data distributions deviate from
Gaussian assumptions. Another approach leveraging M1 for feature selection is presented in [15].
The method selects class-specific informative features, maximizing MI with the target class to
enhance classification performance. This allows even a simple linear classifier to be effective,
reducing reliance on complex models. While applied to object recognition, its principles extend to
high-dimensional classification tasks, where efficient feature selection is essential.

Decision Trees and Information Gain

Entropy plays a central role in the construction of decision trees, where it is used to
calculate information gain. Information gain measures the reduction in uncertainty (or entropy)
when a dataset is split based on a particular feature. A decision tree algorithm selects features
with the highest information gain to create branches, effectively reducing the overall entropy of
the system [16]. In the popular ID3 and C4.5 decision tree algorithms, the feature that results in
the greatest reduction in entropy after splitting is chosen to create nodes in the tree. This process
continues recursively, ensuring that each split reduces uncertainty and leads to the most
informative partitions of the data.

Information Gain = H(Y) — H(Y|X).
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By minimizing entropy at each step, decision trees efficiently organize data and create
models that are easy to interpret. However, their usage extends beyond traditional datasets into
fields like high-energy physics, where rapid detection of rare phenomena is critical. A recent study
[17] demonstrates the application of decision trees in detecting anomalies in proton-proton
collision data at nanosecond timescales. This work specifically focuses on identifying rare Higgs
boson decays in real-time. The decision trees in this application rely on fast, efficient calculations
of information gain to classify particle collision data, reducing entropy by isolating potential
anomalies that deviate from expected particle behaviors.

Another interesting work is [18]. This study tackles the challenge of securely training and
evaluating decision trees in cloud environments without exposing sensitive data. The authors
introduce a method based on additive secret sharing and the Paillier cryptosystem to protect both
user queries and the cloud-hosted model. Their approach ensures secure computation while
supporting offline users, making it suitable for resource-constrained applications like Internet of
Thinking. Experimental results confirm its efficiency, particularly for deep but sparse trees,
demonstrating reduced computational and communication overhead.

Clustering and Similarity Measurement

In unsupervised learning tasks like clustering, Ml is used to measure the similarity between
data points or clusters. The goal of clustering is to group similar data points together, and Ml can
help to determine how much information is shared between the clustering results and the true
labels, when available.

One notable application of ML in clustering is Normalized MI, which measures the
similarity between two clusterings. Normalized Ml is particularly valuable when evaluating the
quality of clustering results, as it quantifies the shared information between the true class labels
and the predicted clusters, normalized by the entropy of both distributions. This ensures that the
score is independent of the number of clusters and the size of the dataset. Normalized Ml is widely
used in applications such as document clustering, image segmentation and analyzing [19], where
it is crucial to assess the quality of unsupervised learning methods.

Fuzzy clustering (a form of clustering in which each data point can belong to more than
one cluster) plays a critical role in ML applications. Traditional clustering algorithms, such as k-
means, assume hard partitioning of the data, meaning each data point belongs exclusively to one
cluster. However, in many real-world scenarios, data points may naturally belong to multiple
clusters with varying degrees of membership. Fuzzy clustering, specifically Probabilistic Fuzzy
Clustering, allows for such flexibility by assigning each data point a degree of membership across
different clusters.

The Robust Possibilistic Fuzzy Additive Partition Clustering method, as introduced in a
recent study [20], builds upon these principles by incorporating deep local information to optimize
the clustering process. This method leverages local data structures to improve clustering accuracy,
particularly in noisy and uncertain environments. The algorithm dynamically adjusts the
partitioning of data, thus reducing the impact of noise and outliers - a common issue in clustering.
A significant extension of MI-based clustering techniques comes from the Information-Theoretic
Co-Clustering approach introduced in [21]. This method simultaneously clusters both rows and
columns of a data matrix, optimizing an MI loss function to uncover latent structures within
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datasets. This framework has been particularly influential in text mining and bioinformatics, where
data is inherently organized in two dimensions, such as documents and words, or genes and
experimental conditions. By minimizing information loss in the clustering process, this method
provides a more interpretable and structured representation of high-dimensional data.

Further advancing the theoretical foundations of MI in clustering, [22] proposed
Information-Theoretical Clustering via Semidefinite Programming. Unlike conventional
clustering approaches, which often rely on heuristic optimization, this method employs
semidefinite programming to ensure a globally optimal partitioning of data based on Ml principles.
The approach has shown effectiveness in areas such as image segmentation and social network
analysis, where precise and stable clustering is crucial.

In the domain of collaborative filtering, [23] introduced an Information-Theoretic Co-
Clustering approach to improve recommendation systems. Traditional collaborative filtering often
suffers from sparsity issues, where users have rated only a small fraction of available items. By
leveraging MI to extract shared patterns from user-item matrices, this method enhances
recommendation accuracy by capturing both cluster-based preferences and rating similarities. This
improvement makes it particularly valuable for applications in e-commerce and content
recommendation platforms. A more recent contribution by [24] introduces Co-Clustering via
Information-Theoretic Markov Aggregation. This method constructs a random walk on a bipartite
graph, optimizing an MI-based cost function to extract meaningful co-clusters. By reducing
information loss during clustering, this technique closely aligns with the IB framework,
demonstrating superior performance in structured datasets like Newsgroup20 and MovieLens100k.
Its effectiveness in real-world applications highlights the growing importance of MI-based
clustering in data-driven decision-making and knowledge discovery. A new information-
theoritical distance measure for evaluating community detection algorithms was introduced in
[25].

These contributions collectively reinforce the role of Ml in clustering, from optimizing
objective functions to handling complex, structured datasets. As research continues, integrating
MI-based clustering with deep learning and representation learning frameworks remains a
promising direction for uncovering intricate patterns in high-dimensional data.

Regularization and Neural Networks

KL-Divergence plays a central role in generative models such as Variational Autoencoders,
which are used to generate new data samples by learning the latent structure of the data. In this
context, KL-divergence is used to regularize the latent space by ensuring that the learned
distribution (the approximate posterior) is close to the prior distribution. The KL-divergence
regularization term encourages the latent variable distribution to resemble a standard Gaussian
distribution, promoting generalization and preventing overfitting [7]. By minimizing KL-
divergence, the model ensures that the learned latent representations are smooth and continuous,
allowing for better generation of new data samples and improved model robustness. Beyond
generative models, MI and IB principles have also been explored as regularization techniques for
deep learning. [8] introduced an information-theoretic analysis of Deep Neural Networks, showing
that training consists of two key phases: an initial empirical risk minimization phase, followed by
a compression phase, where MI between the input and the hidden layers is gradually reduced. This
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compression process aligns with the (IB) principle, acting as a form of implicit regularization.
Their findings provide theoretical support for why deep networks generalize well despite
overparameterization, suggesting that MI-based constraints naturally shape the learning dynamics.
Expanding on this, [26] proposed a framework for learning deep representations by maximizing
MI between input data and learned representations. Their method, Deep InfoMax (DMI), uses
contrastive learning objectives to estimate MI and enforce high-information content in learned
representations. Unlike traditional supervised learning, which relies on external labels, DMI
ensures that learned features are task-relevant while filtering out noise. This MI maximization
strategy has proven effectiveness in improving self-supervised learning, domain adaptation, and
robust feature extraction, reinforcing the growing role of information-theoretic constraints in deep
learning regularization. Cross-entropy remains the standard loss function for optimizing
classification tasks, ensuring that models align their predicted probability distributions with true
labels to achieve accurate predictions [27]. Together, these information-theoretic measures (KL-
Divergence, Ml and Cross-Entropy) serve as fundamental tools in deep learning regularization,
helping models generalize, reduce overfitting, and learn meaningful representations.

The applications of IT in ML are both diverse and fundamental. Core concepts, such as
entropy, MI, KL-divergence and Cross-Entropy, underpin a variety of crucial tasks in ML, from
feature selection and decision-making to unsupervised learning and generative modeling.

Metric and Deep Learning

MI and other information-theoretic measures play a fundamental role in Metric Learning and
Deep Learning, guiding how models learn structured and generalizable representations. By
leveraging entropy, divergence measures, and the IB principle, researchers have developed
techniques, that enhance similarity learning, privacy-aware learning, and transfer learning.

A foundational contribution in metric learning comes from [28], where Information-Theoretic
Metric Learning (ITML) was introduced. Their method optimizes a Mahalanobis distance metric
by minimizing differential entropy, ensuring that similar points are pulled closer while maintaining
constraints on dissimilarity. Unlike traditional distance-learning approaches, ITML leverages
relative entropy constraints, making it more robust in high-dimensional feature spaces. This
approach has influenced a range of applications, from face verification to text similarity
measurement. Privacy concerns in deep learning have led to the development of information-
theoretic frameworks that balance data utility and confidentiality.

[29] proposed a privacy-aware time-series data-sharing framework using Deep
Reinforcement Learning. Their approach formulates data sharing as an optimization problem,
where the agent learns an optimal information disclosure policy under privacy constraints. By
integrating MI constraints, the model selectively reveals useful data while minimizing privacy
risks, demonstrating its effectiveness in financial and healthcare applications.

The theoretical foundations of Information-Theoretic Learning (ITL) were established in
[30], introducing a framework for learning based on entropy and divergence measures rather than
traditional statistical learning methods. ITL provides a more general approach to feature selection,
clustering, and kernel methods, making it a precursor to modern information-based deep learning
models. The use of Renyi entropy and Cauchy-Schwarz divergence in ITL offers an alternative to
classical probability-based learning techniques, leading to more flexible and adaptive models.
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Beyond individual learning paradigms, information-theoretic generalization bounds provide
insights into the transferability of learned representations. [31] explored the role of Ml in Transfer
Learning, analyzing how information retained from the source domain affects generalization in
the target domain. Results of this work highlight the importance of controlling information flow
between layers in deep networks to prevent overfitting while maximizing knowledge transfer. This
work establishes upper bounds on transfer learning generalization errors, making it highly relevant
for domain adaptation and self-supervised learning.

Together, these studies illustrate the growing intersection between IT and Deep Learning,
demonstrating how M, entropy, and divergence measures drive advancements in metric learning,
privacy-aware learning, and transfer learning. As deep learning models continue to evolve,
information-theoretic regularization techniques are expected to play an even greater role in
improving model robustness and interpretability.

4. 1B Framework Applications in ML

The IB framework, first introduced in [32], has become a fundamental tool in ML by providing a
principled approach to optimizing information flow in learning systems. IB offers a way to balance
compression and relevance, formalizing the principle as an information-theoretic tradeoff between
MI with the input and relevance to the target, ensuring that models retain the most essential
information while discarding irrelevant noise. Over the years, 1B has been applied across various
ML domains, including representation learning, clustering, deep learning, privacy-aware learning,
and image processing. The follow-up work [33] further refined the mathematical foundations of
IB, emphasizing how different distortion measures impact information retention in learning
systems. [34] expanded IB’s role in representation learning, showcasing IB's effectiveness in
enhancing generalization for multi-agent systems. In the context of deep learning, in [35], the
authors introduced Deep Variational Information Bottleneck, which extends IB by incorporating
variational inference. This approach has been widely adopted in training robust and generalizable
neural networks by enforcing a structured latent space that reduces overfitting and improves
generalization. Similarly, in [36] information flow in Deep Neural Networks is explored,
demonstrating how IB principles guide the learning process by distinguishing between
representation compression and task-relevant information. In [37], IB is further analyzed for
application in Convolutional Neural Networks, optimizing feature extraction and regularization.
In [38], the authors explored IB for splitting composite neural networks, improving model
modularity and efficiency.

The IB framework has also found extensive applications in image processing. In [39], IB is
applied to image segmentation, optimizing feature selection for improved segmentation accuracy.
In [40], the authors introduced the Residual Bottleneck Dense Network for image super-resolution,
demonstrating how 1B-based architectures enhance high-resolution image synthesis. In [41], IB is
explored for compressed sensing image reconstruction, leveraging IB principles to enhance the
quality of reconstructed images in resource-constrained environments. IB's role in 5G-LDPC
decoding with coarse quantization is examined in [42], improving information retention in error-
correcting code applications. Additionally, in [43], Exponential IB Theory is applied to pedestrian
attribute recognition, optimizing robustness against intra-attribute variations.
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Beyond vision-related tasks, the IB principle has been successfully applied to a range of
other domains, including clustering and feature selection [44],[45],[46],[47], geospatial learning
[48], and multimodal natural language processing [49]. The IB framework has also been utilized
in speech and audio processing [50],[51],[52], as well as in environmental monitoring and time-
series analysis [53], while continuing to play a central role in self-supervised visual representation
learning [54].

In privacy-aware ML, IB has been utilized to balance data utility and confidentiality. A
Privacy-Aware Joint Source-Channel Coding method based on Disentangled IB is introduced in
[55], optimizing secure data transmission. Similarly, in [56], the authors proposed FIBNet,
demonstrating how IB can prevent leakage of sensitive attributes while retaining necessary
identification information. In [57], Robust IB feature extraction is explored, enhancing adversarial
robustness in ML models.

Several additional contributions have extended the application of the IB framework across
diverse ML domains. In reinforcement learning and decision-making, Collaborative [58] and Two-
Way Cooperative [59] IB frameworks were introduced to optimize multi-agent systems under
information-theoretic constraints. In the context of scheduling and optimization, an 1B-based
heuristic for job-shop scheduling is proposed in [60], demonstrating IB's utility in large-scale
combinatorial problems. In [61], the authors applied tunable IB with Rényi measures to improve
fairness and interpretability in classification tasks.

As IB research continues to evolve, its applications across deep learning, clustering, privacy,
and reinforcement learning highlight its broad impact in ML. Future directions include integrating
IB with large-scale self-supervised learning and enhancing IB-based optimization techniques for
more efficient model training. The increasing adoption of IB principles underscores its importance
as a fundamental tool for structured and efficient learning in ML. For more details on this topic,
we refer to a comprehensive survey [62].

5. Challenges and Limitations of IT in ML

While IT has significantly contributed to the advancement of ML, its practical application is not
without challenges. Techniques using entropy, MI, and KL-divergence offer powerful tools for
managing uncertainty, optimizing models, and guiding decision-making. However, as ML models
scale to handle ever-increasing amounts of data and complexity, several challenges emerge.

One key limitation is the scalability of information-theoretic measures, particularly when
applied to high-dimensional datasets. Computing metrics like MI or entropy often becomes
computationally expensive as the dimensionality of the data increases. For example, in [63]
authors introduced MINE (Mutual Information Neural Estimation), a scalable method for
estimating MI by using gradient descent over neural networks. While MINE improves scalability,
it still faces computational challenges when applied to extremely large datasets or high-
dimensional input spaces, requiring efficient optimization techniques to ensure the model doesn’t
become prohibitively slow.

Another challenge is Approximation errors, as noted in [64], estimating M1 accurately is
difficult in practice, especially for continuous variables. MI is sensitive to the quality of the
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probability distribution estimates, and small errors in density estimation can lead to significant
misestimation of M1 values.

Despite these challenges, efforts to address the limitations of IT in ML are ongoing.
Researchers are continuously exploring ways to improve the scalability and accuracy of
information-theoretic measures, particularly in high-dimensional spaces. For instance,
advancements in approximation techniques, such as neural estimation methods like MINE, provide
a promising foundation for mitigating computational constraints. Additionally, adaptive models
that can handle noisy and imbalanced data more effectively, such as the IB framework, continue
to evolve.

Moving forward, future work will likely focus on refining these methods to better suit real-
world datasets, particularly those characterized by non-stationarity and high dimensionality. By
developing more robust estimation techniques and improving the adaptability of models in
dynamic environments, researchers can further harness the power of IT to unlock its full potential
in ML.

6. Conclusion

This survey has highlighted the critical role that IT plays in ML, providing a framework for
managing uncertainty, optimizing models, and improving decision-making. Through the use of
concepts like entropy, M1, and KL-divergence, information-theoretic approaches have enhanced
various ML tasks. However, challenges such as scalability, approximation errors, and dependency
on accurate data modeling remain key obstacles.

Addressing these issues through ongoing research and improved techniques will help unlock
the full potential of IT in ML, driving future innovations and making models more robust and
adaptable to complex, real-world problems.
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1. Introduction

The basic figures of classical (Euclidean) geometry are simple and clear: circle, sphere,
cylinder, pyramid, etc. The impressive achievements of this science allowed ancient thinkers
to assume that the geometric picture of the world is described by Euclidean geometry based
on the five Platonic solids (regular polyhedra).

Over time, it became clear that this position was only partly true, since it was impossible
to describe the shapes of objects such as clouds, mountain ranges, coastlines of seas and lakes,
etc. within the framework of classical geometry.

The question of the existence of a geometry that can describe and study the forms of such
objects has been a topic of interest for scientists for a long time. However, it was only with
the development of powerful computing systems (enabling us to visualize such structures)
that the construction of such a theory became possible.

Geometry describing non-standard forms was proposed by B. Mandelbrot [1] based on
the concept of fractal introduced by him. It was called fractal geometry.
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The difference between this geometry and classical Euclidean geometry is as follows. In
classical geometry, objects are idealized, meaning their surfaces are assumed to be perfectly
smooth, without any irregularities, cracks, or breaks. In contrast, fractal geometry studies
the patterns inherent in natural objects, processes, and phenomena with the presence of
roughness, brokenness, and other complexities (see, for example, [2, 3]). It offers a variety
of ways to describe and measure both natural and man-made objects.

Thanks to the development of fractal geometry, it has recently become possible to ob-
jectively (quantitatively) evaluate the aesthetic appeal of architectural compositions for the
first time.

There are many monuments of world architecture for which fractal analysis has been
carried out. These are remarkable Gothic cathedrals in Europe, beautiful mosques of Islamic
architecture, unique Hindu temples (see, for example, [4, 5, 6, 7]). Such an analysis has not
been carried out for Armenian temples. This paper attempts to fill this gap. It is devoted
to the application of fractal geometry to the quantitative evaluation of the attractiveness of
such outstanding architectural monuments of medieval Armenia as the Zvartnots, Hripsime
and the Cathedral of the Holy Virgin in Ani.

When conducting fractal analysis, various computing tools are used. In this work, the
analysis is carried out on the basis of the FrakOut! package, which is very convenient for
calculating the fractal parameters of buildings. When evaluating the architectural compati-
bility of the plan and facade of the temples under consideration, the STATISTICA software
package was used to find statistical estimates based on the available data.

2. Fractals and Fractal Geometry

According to Mandelbrot [1], a fractal is a structure consisting of parts that are in some
sense similar to the whole (or to each other).

Fractals can be found almost everywhere in nature. For example, tree crowns, snowflakes,
broccoli heads, crystals, etc.

From a mathematical point of view, a fractal is a geometric figure (a set of points in
Euclidean space) whose fractal dimension (the Hausdorff-Besicovitch dimension) is either
fractional or exceeds its topological dimension.

The Hausdorff-Besicovitch dimension of some finite set G, G C R", is defined as follows.
Consider an n-dimensional cubic lattice in R™ with the length of the edge of a cube (cell)
equal to A. Let N(A) be the minimum number of cubes needed to cover the set G. Then
the fractal dimension D of this set is defined based on the following requirement:

lim N(A)A? =

A—0

0, if d> D,
oo, if d< D.

From this it is clear that the dimension D of the set G is essentially the boundary that
shows that if d < D, then the number of cubes N(A) is insufficient to cover the set G, and
if d > D, then the number of cubes N(A) is excessive for coverage.

It is generally accepted that the fractal dimension is a characteristic property of fractals,
i.e., if the dimension D is not an integer, then the set GG is considered a fractal. In practice,
approximate numbers are used. For A ~ 0, D ~ —In N(A)/In A.

In addition to natural fractals, there are also artificial (non-natural) fractals. The first
examples of non-natural fractals were constructed at the end of the nineteenth century in
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connection with purely mathematical problems of function theory. From the point of view
of classical mathematical analysis, they had extremely unusual properties. For example, this
is the Cantor set (Cantor dust), the nowhere differentiable Weierstrass function, the Koch
snowflake, the Brownian curve on the plane, etc. For some of them, fractal dimensions have
been calculated: the Cantor set has a fractal dimension of D = 1In2/1In 3, and for a Brownian
curve on a plane, it is equal to 2, that is, exceeds its topological dimension.

It should also be noted that fractal principles are present in the theory of fractional
integro-differentiation as well. The fact is that in a fractal environment, the change in
physical quantities can slow down to such an extent that it is impossible to describe such
a process using an ordinary derivative. This can only be done using integro-differential
equations that include a fractional derivative with respect to time. Armenian mathematicians
M. Djrbashian and A. Nersessian made a significant contribution to this theory (see [8]).

3. Quantitative Evaluation of Aesthetic Appeal of Fractal Structures

Fractal geometry can be used as a method for analyzing the structure of buildings. It has been
noted that if the fractal component of an architectural structure is clearly traced, then this
structure has strong architectural aesthetics. Psychologists have developed a quantitative
method to assess such aesthetics.

The first systematic studies of the perception of fractal forms were conducted by J.
Sprott and his colleagues. These studies analyzed the relationships between objective (fractal
dimension) and subjective assessments of the visual attractiveness of various objects (the
results of these works are summarized in [9]). It was later shown that subjective assessments
of visual attractiveness correlate quite strongly with fractal dimension and are reproduced
upon repeated testing [10, 11, 12]. It was also shown that the fractal dimension is the
main factor influencing subjective assessments of the attractiveness of objects with fractal
properties. Preference is given to objects with an average fractal dimension in the range of
1.3-1.5 (flat images). Subsequently, many studies were devoted to the empirical study of the
perception of fractals of natural and artificial origin (see, for example, [13, 10, 14, 15]).

Research by K. Hagerhall and her group [14] has established that emotional states in
relation to natural landscapes can be predicted by typical fractal characteristics, i.e., by
fractal dimension.

These studies confirmed the relationship between assessments of aesthetic appeal and
complexity with fractal dimension.

4. Fractal Analysis of Armenian Temples

In architecture, fractal principles are used in the design of objects using computer modeling.
These principles can be used to create unique and very interesting architectural forms (see,
for example, [16]). In this case, practical methods for calculating the fractal dimension of
the structures under consideration play an important role.

One of the most popular methods is the method of counting cells that have a non-empty
intersection with the image being studied (box-counting dimension method). Apparently,
W. Lorenz [17] and C. Bovill [18] were the first to study and use this method most fully.

Let us describe in general terms the algorithm for applying this method.

In the first step, a cubic (square) grid with the cell edge length (scale) equal to A is
superimposed on the image under study. Initially, A is taken to be equal to L, where L is
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the length of the rectangle containing all the images. Let N(A) be the number of all cubes
that have a non-empty intersection with the image under study.
Next, the following ration is considered

—log N(A)/log A,

and its behavior is investigated under stepwise changes in the scale A.

The scale is reduced by half at each step. The process can continue indefinitely, but in
practical applications, it is stopped depending on the requirements of the task. The slope of
the graph of log N(A) from — log A gives an approximate value of the fractal dimensions of
the image.

Below, we will present a fractal analysis of the temples of Hripsime and Zvartnots, as
well as the Ani Cathedral, using the FrakOut! program. In parallel, a statistical analysis of
the compatibility of the plan and facade of these buildings is also carried out.

The results obtained show that the temples under consideration have high architectural
attractiveness, and their plan and facade are in excellent agreement with each other.

4.1  Hripsime

The temple was built by Catholicos Komitas in 618 to the east of Echmiadzin on the burial
site of Saint Hripsime. It is a central-domed structure with an internal cross-shaped base.
It is a recognized masterpiece of Armenian architecture.

Appendix 1 contains fragments of the process of calculating the fractal dimension of the

facade and plan of the Hripsime temple. The results of the calculations are summarized in
Table 1.

Table 1. Fractal dimension of the Hripsime Cathedral facade and plan

Calculation of fractal dimension between: | fractal dimension
large grid size small grid size facade plan
200 100 1.46 1.74
100 50 1.48 1.58
50 25 1.49 1.49
25 12.5 1.49 1.51
general fractal dimension 1.48 1.58

From the obtained data, it follows that the temple of Hripsime has an average fractal
dimension of 1.48. The calculations also show that the standard deviation of these data
from the average is 0.014. Regarding the architectural plan, the following estimates were
obtained: the average fractal dimension is 1.58 with a standard deviation of 0.113. The
correlation between the fractal dimensions of the facade and the plan is —0.997.

Fig. 1 shows a graph of the dependence of log N(A) on —log A for the facade of the
temple, which is a linear regression constructed using the obtained values of the fractal
dimension.
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The Zvartnots Cathedral was founded by Catholicos Nerses III in the middle of the 7th
century, not far from Vagharshapat (Echmiadzin) in the place where, according to legend,
Gregory the Illuminator and the king of Armenia Trdat met. This majestic temple is a
tetraconch (a central-domed structure with a plan in the form of a cross with rounded ends).

Appendix 2 contains fragments of the process of calculating the fractal dimension of the
facade and plan of the Zvartnots temple. The results of the calculations are summarized in

Table 2.

Table 2. Fractal dimension of the Zvartnots Cathedral facade and plan.

Calculation of fractal dimension between:

fractal dimension

large grid size small grid size facade plan
200 100 1.64 1.67

100 50 1.54 1.57

50 25 1.48 1.49

25 12.5 1.47 1.43
general fractal dimension 1.533 1.540

From the obtained data, it follows that the Zvartnots temple has an average fractal
dimension of 1.533. The calculations also show that the standard deviation of these data
from the average is 0.008. Regarding the architectural plan, the following estimates were
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obtained: the average fractal dimension is 1.54 with a standard deviation of 0.104. The
correlation between the fractal dimensions of the facade and the plan is 0.974.

Fig. 2 shows a graph of the dependence of log N(A) on —log A for the facade of the
temple, which is a linear regression constructed using the obtained values of the fractal
dimension.
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Fig. 2. Zvartnots: graph of the dependence of log N(A) on log(1/A).

4.3  Cathedral of the Holy Virgin in Ani

The Ani Cathedral is the pinnacle of Armenian architecture of the 9th-11th centuries. It is
a prototype of Gothic architecture. Its architectural forms are similar to European Gothic.

Regarding Gothic, we note that there is a very reasonable assumption that the first
object where Gothic principles were applied was not the Cathedral of Saint-Denis (a suburb
of Paris), but the Cathedral of the Holy Virgin in Ani. The interior of this temple clearly
contains such architectural compositions as elongated pointed arches, bunches of columns
with ribbed vaults. These compositions were developed in Gothic architecture, which was
widespread in Western Europe.

In his major work [19], Professor of the University of Vienna J. Strzygowski writes:
“Consequently, it remains to be recognized that the Armenians built in the Gothic style
approximately 150 years earlier than was the case in Europe”.

Appendix 3 contains fragments of the process of calculating the fractal dimension of the
facade and plan of the Ani Cathedral. The results of the calculations are summarized in
Table 3.
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Table 3. Fractal dimension of the Ani Cathedral facade and plan.

Calculation of fractal dimension between:

fractal dimension

large grid size small grid size facade plan
200 100 1.56 1.48

100 50 1.53 1.50

50 25 1.56 1.43

25 12.5 1.5 1.13
general fractal dimension 1.537 1.385

From the obtained data, it follows that the Ani Cathedral has an average fractal dimen-
sion of 1.537. The calculations also show that the standard deviation of these data from the
average is 0.029. Regarding the architectural plan, the following estimates were obtained:
the average fractal dimension is 1.385 with a standard deviation of 0.172. The correlation
between the fractal dimensions of the facade and the plan is 0.797.

Fig. 3 shows a graph of the dependence of log N(A) on —log A for the facade of the
temple, which is a linear regression constructed using the obtained values of the fractal
dimension.
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Fig. 3. Cathedral in Ani: graph of the dependence of log N(A) on log(1/A).

5.  Conclusion

Fractal analysis of the examined Armenian churches showed a high level of consistency
between subjective and objective assessments of their aesthetic appeal.
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Appendix 2. Calculation of the fractal dimension of the facade and plan of the Zvartnots temple.
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Appendix 3. Calculation of the fractal dimension of the facade and plan of the Ani Cathedral.
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Abstract

This article examines the behavior of the normalizing constants in V. Feller’s theo-
rem on the convergence of distributions for sums of independent, identically distributed
random variables with heavy tails at infinity. It is proved that, in this setting, the nor-
malizing constant is regularly varying at infinity.
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1. Introduction

We consider a sequence of independent, identically distributed random variables with the
distribution function F'(x). Suppose that for x — +o00, an asymptotic relation is executed:

x~*L(x)
1—F(r) ~ ——= 1
(@) ~ 1)
where 0 < a < 1, T'(a) = [;° 2 'e "dz, L(x) - slowly varying function at infinity (SVFI),
i.e., a positive function defined for (0, 00) and for each x > 0 fulfills the condition

L
lim (tz)

= 1.
t—+o0o L(t)

Subsequently, according to Theorem 2 (see [1], XIIL.6, p. 448), if F' is the probability
distribution, concentrated on (0, 00) and such that upon n — oo

F™(ap,x) = G(x), (2)

54
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(at points of continuity), where F"*(-) - n-fold convolution of distribution F' with itself, while
G is the proper distribution, not concentrated at one point and if the type of distribution F'
is (1), a, variates in standard measure may be selected in a way that

nL(ay,)

«
an

— 1. (3)

In this case, the asymptotic relation (2) is executed along with the distribution of probabili-
ties G = G, where G, is a stable distribution with 0 < a < 1, parameter focused on (0, co0)
having Laplace-Stieltjes transform e=".

2. The Behavior of the Normalizing Constants in V. Feller’s Theorem at
Infinity

The positive function R is called (accurately) regularly varying at infinity if it is measurable
on the [A, 00), A > 0 semiaxis and there exists such a number as o € (—o0, +00), which for
a certain x > 0

lim ((R(xt)/(R(t)) = 2°.

t——+o0

Meanwhile, « is called the order (indicator) of the function R.

Suppose that a, = n'/%p(n) and find out what features shall possess function ¢(n) in
order to execute asymptotic (3).

By plugging in (3) an equation for a,, we will deduce an equivalent (3) relation:

L (n'/*Pp(n)) ~ % (n),
or in a more general form:

L (#/hp(t)) ~ (1). (4)
Consider the following relation:

L((xt)p(tx))

Ri(z) = L(t1/alpha(p(t)) '

By virtue of asymptotic relation (4) upon t — 400 out of (5), it follows that

- (25)”

In ([2], p. 10), the following is proved:

Theorem 1. (On the introduction of SVFI). If funcion L, defined on semiazis [A,+00),
A >0 - SVFI, such number B > A will be found so that for all x > B occurs the following

representation: )
L(z) = exp {n(x) +/ @du}, (7)

B U
where n- limited measurable function on [B,400) is such that
a) n(z) = ¢ (|| < oc0) and
b) e(z) - continuous function on [B,+00) is such that e(x) — 0 in case of x — +00.
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Since L is SVFI, therefore using the relation (5), it is not complicated to deduce the following
equation for R;(z):

(te)1/*p(ta)
Relw) = expfn((t2)"“(t2)) = n(()"/*(2))} - exp { L. dy} . ®

w(tz)
w(t)

By introducing the notation a;(z) = , the expression (7) will be transformed into the

following type:

z

2.y ¢ (g (HY20(t)2
Rt<x>:exp{n<<m>1/%o<tx>>—n<<t>l/w<t>>}-exp{ / (= (% () ))dz}. o)

In the case of ¢ — +o00, the first factor in the right-hand part of the relation (8) by virtue
of condition b) of Theorem 1, tends to unity. Therefore, upon the availability of sufficiently

high ¢
xl/o‘at(z) e (s 1/a

Y

Theorem 2. In case of any x > 0, the following equation is true:

lim 2"/%a,(z) = 1.
t—+o00

Proof. It shall firstly be proved that lim,_,sa,(x) - +oo for all z € (0, 400). Suppose
that the contrary takes place: then for each x > 0, there exists a sufficiently high ¢ty = ¢o(x),
that in the case of all ¢t > ¢j, the following condition is executed:

oy (z) > 1. (11)

Further, condition b) means that for any § > 0, there exists yo = 3(d), such that for all
y > 1o occurs the the following inequality:

e(y) <o (12)

Besides, since tl/ago(t) — 400 in case of t — 400, we will select t; > t; such that upon
t > t; inequality tY/%p(t) > yo is executed by virtue of selecting ¢, and condition z > 1
apparent from (12), uniformly in z follows the inequality e(2tY/“p(t)) < . Therefore, after
uncomplicated transformation, the following inequality is deduced:

xl/aat(z) tl/a t
exp {/ w dy » < 2%/%a¢(z). (13)
1

Y

On the other hand, by virtue of asymptotic relation (4) in the case of t — 400, the following

is concluded:
L()e(tn) (el .
sy~ (5@) =@ -

That’s the inequality (11) from which we deduce the following:

Ri(z) =

x5/°‘af(x) > ay(z).
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By selecting 0 < « from the previous inequality, we have the following:
2% > a0, (15)

Upon fixing = > 0, the left-hand side of (13) is limited, while the right-hand side by the
virtue of limitation « — 0 > 0 for ¢ — 400 tends to infinity, resulting in a contradiction.
Thus, it can be concluded from (10) that for any x > 0, the following inequality holds:

lim 2%, (z) < 1. (16)

t—+o0

Let’s demonstrate that a,(z) - 0 in the case of t — +o00. We'll also conduct the proof by
an indirect proof method. Assume that for each x > 0 there exists such ¢’ = ¢'(z), that for
all t > t/, the following condition is satisfied:

z/%y(x) < 1. (17)
Simultaneously ¢” > max(t’, ;) may be taken as high that
2y () - 1 0(t) = (xt)*p(at) > yo,

where vy is defined in (11).
Taking into consideration the above, it is not difficult to prove that

xl/&at(z) tl/a t 1 tl/a t
o / e (V¢ (t)y) P _/ e (V' (t)y) ay
1 Yy xl/aat<z) Y

> exp {—6111 z|i1/aat(z)} (18)

= ad(z) - 2%/

On the other hand, for all z > 0 upon sufficiently high ¢ from (14), we have the following:
Ri(z) ~ a(z) > al(z) - 2.
By selecting § < «, in (12) we will have the following:
ay(x) > £ > 0,

that in the case of ¢ — 400 contradicts our assumption, i.e., the condition (17) is inexe-
cutable. Thus, Theorem 2 is proved. B

Thereof, it follows that for all x > 0 lim;, ., R;(xz) = 1, while from relation (6) it is
concluded that function ¢(¢) is SVFL

Thus, the following is proven:

Theorem 3. If conditions (1) — (3) are executed, the norming quantity a, is a regqularly
varying function at infinity with the parameter 1/cv.

3. Conclusion

If F' is the distribution of probabilities, concentrated on (0, 00), for which in case of z —
+oo asymptotic relation (1) is executed and G, is a stable distribution with the parameter
0 < a < 1 concentrated on (0, 00), then

F"* (nl/o‘ (n)- :1:) Go(x),
where ¢(+) is SVFI connected with SVFI L(-) by the followmg asymptotic relation
n)

L (n'*p(n)) ~ ¢*(n).
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Abstract

Diophantine equations are multivariate equations, usually polynomial, in which
only integer solutions are admitted. A brute force method for finding solutions would
be to systematically substitute possible integer values for the unknown variables and
check for equality.

Grover’s algorithm is a quantum search algorithm which can find marked indices in
a list very efficiently. By treating the indices as the integer variables in the Diophantine
equation, Grover’s algorithm can be used to find solutions in a brute force way more
efficiently than classical methods. We present a hand-coded example for the simplest
possible Diophantine equation, and results for a more complicated, but still simulable,
equation encoded with a high-level quantum language.
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1. Introduction

A Diophantine equation is an equation, typically polynomial, with integer coefficients, in
more than one integer variable. A famous example occurs as Fermat’s Last Theorem, which
states that

" oyt =" (1)

has no solutions for n > 3 where n, z, y, and z are all natural numbers. The simplest
Diophantine equation is linear in two variables and is of the form

ar + by =n, (2)

*Data Availability: Codes for all parts of this work are available at
https://github.com/LaraTatlil8/grovers-algorithm.
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where a, b, and n are given constants. While this equation has well-known solutions, in
many other cases, solutions to Diophantine equations are not known (see e.g. the regularly-
updated paper by Grechuk keeping track of some open and solved problems [1]). Seeking
solutions to Diophantine solutions through numerical search is an established method, where
searches can prove the existence of solutions where it is posited that none exist [2].

Here, we bring quantum computing to bear upon the search for Diophantine equation
solutions, using Grover’s algorithm [3] to look for solutions for the simple linear equation of
the form (2). We choose a = b =1 and n = 5 arbitrarily for definiteness, and also explore a
simple quadratic equation to give an indication of scaling. Both examples are deliberately
simple so that they can be encoded in a workable number of qubits on an available simulator.
While we are not aware of works explicitly solving Diophantine equations with a quantum
search algorithm, we note recent work using Grover’s algorithm to perform a series of basic
arithmetic procedures through search [4]. In our work we use standard classically-inspired
quantum circuits for arithmetic (not using search) and use Grover for the search for equality.

2. Grover’s Algorithm as Equation Solution Searcher

We give here a brief discussion of the principles of a quantum search algorithm, following the

treatment in Nielsen and Chuang’s textbook [5]. The search algorithm generally searches

through a search space of N elements. It is supposed that one can work at the level of the

index of the elements such that if presented with the index, it is easy to check if it is the

element sought. This is the case in our example where checking if given numbers x and y

are solutions of the given equation is straightforward by direct substitution and evaluation.
The algorithm uses an oracle, O, which acts as

Olz)lg) — |x)lg @ f (). (3)

Here, |z) is a register of index qubits, and |g) is the oracle qubit. @ is addition modulo 2
and f(z) is a function which returns 0 if index z is not a solution to the search problem,
and 1 if index z is a solution.

If the oracle qubit is prepared in the state |—)
oracle is

(]0) — [1))/+/2 then the action of the

ofs) (1) =y (2710, )

thus the action of the oracle marks out, with a phase change, components of the register
state |z) which are solutions to the problem - i.e. have f(x) = 1. The full Grover algorithm
then amplifies the states which have been marked, and suppresses the unmarked states,
using a “diffuser” circuit. The oracle-diffuser combination together constitute a single Grover

iteration. A total of O(y/N/M) iterations are needed in general to have the solutions selected
in the register with high probability, where M is the number of solutions in the N-element
space. Note that the standard diffuser requires that valid solutions do not account for the
majority of the solution space, but this is the usual condition for an interesting Diophantine
equation.

For the case of our linear equation (2), the indexing register works by having 2m qubits
in which each half encodes one of the numbers x and y. The encoding is made directly
in standard binary and we do not consider negative numbers. Clearly the size of m will
determine the available integers in the search space, and one must apply ever more qubits
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to increase the size of the search space, though one benefits from an exponential increase in
search space as the number of qubits increases linearly.

For this exploratory study, to find solutions to the equation x + y = 5 we use a 2m = 6
qubit register |z) to encode two 3-bit numbers to add together. The oracle performs the
addition and checks the result against the desired solution. The details of the quantum adder
we use is given in the next section.

3. Quantum Adder Circuit

A quantum adder capable of calculating the sum of two 3-qubit binary numbers was produced
using Qiskit. The adder was designed in such a way that the registers storing the input
numbers were not overwritten during the calculation, as is the case with e.g. ripple-carry
adders [6]. Retaining the input numbers is useful for use in further calculation, though not
vital in our case.

In this setup, shown in Fig. 1, the first 3 qubits, xg, z; and x5, denote the binary digits
representing a natural number x in the format xzqgzi2,, where x5 is the least significant bit.
In the same manner, qubits yg, y; and y» denote the natural number y in the format yoy1ys.
Qubits ag and a; represent ancillary qubits used to hold carry bits in the addition. Qubits
So, S1, S and sz denote the solution to x + y in the form sgs;sss3, where s is the least
significant bit. The figure shows all qubits that are needed for the full Grover algorithm.
Qubit g2 is the oracle qubit |¢) as in equation (3).
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Fig. 1. A diagram of the quantum adder with barriers included to visually indicate each section.
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The dividers labelled A, B, and C in the circuit help label different functional parts.

In the section terminated by divider A, an addition operation is performed on the qubits
representing the least significant bits xo and y, using two CNOT gates and one Tofolli gate,
with the result stored in the qubit s3 and the first carry bit stored in ay.

In the section between dividers A and B, the qubits representing x, y;, and the carry
bit ag are added using three CNOT gates; the target is set to the sum digit s,. Three Tofolli
gates are used to compute the second carry bit, stored in a;.

In the section between B and C, the sum digit s; is calculated using three CNOT gates
acting on the qubits representing xg, vy, and the second carry bit in a;. The final sum digit,
S, is calculated using three Toffoli gates and takes into consideration the second carry bit.

In total, this adder employs 8 CNOT gates and 7 Toffoli gates collectively acting over
12 qubits. In terms of scaling to larger registers, adding two m-bit numbers requires 4m
qubits (2m representing the numbers to be added, m — 1 ancillary carry bits, and m + 1 to
represent the sum). The number of gates is 3m — 1 CNOT gates and 3m — 2 Tofolli gates.

4. Application of Grover’s Algorithm

In order to apply Grover’s algorithm to solve a linear Diophantine equation ax + by = n in
the case a = b =1 and n = 5, it is first necessary to apply a Hadamard gate to each of the
qubits |xg...Z2,%0...y2) encoding x and y. This produces the initial superposition state
with all possible solution strings present with equal amplitude.

We then construct a quantum oracle capable of “marking” the solutions once queried.
This consists of the quantum adder and its inverse circuit with a query circuit in between
which applies a phase shift of -1 to the solution qubits of the adder, if and only if, the
solution is in the state [sgs1sas3) = |0101). All other states are left unchanged. This is
achieved using two X-gates and a multi-controlled Toffoli gate targeting g2, configured to
be in the |—) state prior to implementing Grover’s algorithm. X-gates are re-applied to
reverse the computation. The query circuit design used for this example is provided in the
left-hand part of Fig. 2.

Each iteration of the oracle is followed by the circuit used for the diffusion operator,
which by acting across the six qubits |zg...x9,yo...y2) amplifies states that sum to give
the desired solution only. In this diffuser circuit, shown for our case in the right-hand part
of Fig. 2, the combination of Hadamard and X-gates, in conjunction with a multi-controlled
Toffoli gate, enable a phase change of -1 to be applied to the initial superposition state. This
completes one full iteration of the Grover algorithm. After the desired number of algorithms,
one would then perform a measurement on a real quantum computer, identically prepared
through many repeated experiments, to build up a histogram of most probable outcomes
corresponding to the sought solution(s). The multiple measurements are known as “shots”
in the language of quantum computation. In our present example, we simulate our circuit
using a full quantum statevector, so present results in the next section by simply reading
off the amplitudes of each register state. We show a simulation of a shot-based calcualtion
later, for the case of a quadratic equation.
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Fig. 2. Left: Diagram of the query circuit and its inverse used for the oracle operation, O, for the
case [sps15283) = |0101). This circuit is run after the quantum adder circuit and is followed by the
inverse quantum adder, forming a complete oracle. Right: The diffuser circuit used to amplify the
solution(s).

5. Implementation and Result

The full quantum circuit, including the Hadamards to initialize the superposition of the x
and y register qubits and the |—) initialization of the oracle qubit, is shown for one iteration
in Fig 3. By running this full quantum circuit on BlueQubit’s statevector simulator, it is
shown that two iterations of Grover’s algorithm are sufficient to generate the full set of
solutions to our simple Diophantine equation.

The histogram displayed after one iteration is displayed in Fig. 4; the histogram for two
iterations is displayed in Fig. 5. Note that the solution should be read from left to right,
with the first three digits representing xgzi2x2 and the following digits yoy1ys.
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Fig. 3. The complete circuit employing one Grover iteration. The t symbol indicates Hermitian
conjugate.

The solutions are seen to be correct solutions of the Diophantine equation x +y = 5, and
we tabulate them for clarity in Table 1.

Table 1. Solution states picked out by Grover’s algorithm in search for solutions to Diophan-
tine equation x +y = 5.

quantum state x (base 2) y (base 2) x (base 10) 1y (base 10) x4+ y (base 10)
101000 101 000 5) 0 )
001100 001 100 1 4 )
011010 011 010 3 2 )
100001 100 001 4 1 )
000101 000 101 0 b} 5
010011 010 011 2 3 )

We find that six iterations of Grover’s algorithm are required to return to the probability

distribution shown in Fig. 4.
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6. Example with squaring

As an example of a more complicated equation, we look for solutions of the equation

()

x2+y2:z.

The complication of raising variables to a power brings in an increased overhead in ancillary
qubits and in depth of quantum circuit necessary to perform the calculations, meaning a
more automated method for circuit generation is necessary, as opposed to the hand-made

adder used in our first example.
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Fig. 6. Grover search for 22 4+ y? = 2.

Table 2. Results of simulation of quadratic equation x? + y? = z using Classiq platform

index ‘X y z
1000010 | 2 0 4
1001000 | O 2 4
1010110 {2 1 5
1011001 {1 2 5
0010001 |1 0 1
0010100 |0 1 1
0000000 | O 0 O
0100101 |1 1 2

We made use of the Classiq framework [7], which is able to automate the conversion of
quantum algebra into circuit form. The equation (5), when variables z, y, and z are encoded
with 2, 2, and 3 qubits respectively, is converted into a 18 qubit circuit with a depth of 502
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basis gates. In order to search for Pythagorean triples, the circuit for 22 + 3% = 22, with the
minimum bit-representation to find the {3,4,5} triple was designed on the Classiq system,
and has a qubit count of 33 and a depth of 981. This latter circuit cannot be simulated on
the free Classiq platform and we present results of the simpler equation (5), shown in Fig. 6,
using a 10,000 shot simulation, as opposed to the exact statevector calculation for our first
example.

The labelled peaks, reading from left to right are shown in Table 2. Note that the
encoding used by Classiq is such that the seven bits in the indices encode the variables as
202122Y0Y1T0x1, witht he least significant bit at the right in each variable encoding. Note that
the noisy background for the non-amplified non-solutions in Fig. 6 is due to “shot noise”
that comes from the statistical analysis of the quantum measurement.

7. Conclusions

Grover’s algorithm can be implemented to search for solutions to simple linear Diophantine
equations. We have not attempted implementation on a real quantum computer, and the
ability of our circuit to operate on noisy intermediate-scale quantum devices would need to
be evaluated. Nevertheless, further work could investigate more complicated Diophantine
equations, if access to sufficient real or similated qubits is available. In that case, more
interesting unsolved cases, like those listed in Grechuk’s paper [1] could be tackled.

Furthermore, we have not attempted to refine or optimize the quantum algorithm, rather
concentrating on a straightforward implementation. Techniques to improve the Grover con-
vergence [8] could be applied, while inclusion of a quantum counting approach [9] would
allow one to gain knowledge of how many Grover iterations should be applied in advance
of performing each calculation. For a more general Diophantine equation solver, such en-
hancements would be desirable. We also comment that we have preformed a naive brute
force search, while standard methods for solving Diophantine equations can be invoked to
to reduce the search space.
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Abstract

Drone technology has enabled major advancements in autonomous systems, partic-
ularly in swarm robotics. This paper presents a novel automation technique aimed at
enhancing the efficiency, adaptability, and robustness of self-organizing drone swarms.
The system uses decentralized control algorithms and robust communication proto-
cols to enable real-time adaptive learning and decision-making among drones. Each
drone acts as an autonomous agent, adjusting its behavior based on environmental
inputs and interactions with other drones. A hybrid communication model blending
peer-to-peer and cluster-based protocols ensures effective information sharing and co-
ordination. To build a scalable and resilient architecture, multi-agent systems theory
is integrated with advanced self-organizing strategies. Extensive modeling and real-
world testing evaluated the systems performance in complex scenarios such as disaster
response, environmental monitoring, and surveillance. Results demonstrate significant
improvements in swarm efficiency, resilience to failures, and adaptability to dynamic
environments. The incorporation of adaptive learning algorithms further optimized
task allocation and execution in real time. This work represents a substantial advance-
ment in autonomous aerial robotics, offering a comprehensive framework for deploying
intelligent, self-organizing drone swarms and highlighting the transformative potential
of automata-based approaches in future autonomous systems.
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1. Introduction

Drone technology has improved dramatically in recent years, including benefits in agricul-
ture, logistics, surveillance, and disaster response. Among these advances, swarm robotics

71
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has emerged as a particularly promising field of study and application. Swarm robotics
draws inspiration from natural systems such as ant colonies and bird flocks to create de-
centralized, self-organizing groups of robots capable of performing complicated tasks more
effectively than individual units [1, 2]. This technique uses the collective intelligence and
collaborative skills of several robots to achieve goals that would be difficult or impossi-
ble for a single robot [3]. The application of an automata mechanism to a self-organizing
swarm of drones represents a significant leap in the field of autonomous aerial robotics. In
the context of drone swarms, an automata mechanism enables individual drones to operate
independently while seamlessly coordinating with other drones in the group. This decentral-
ized strategy enhances the swarm’s ability to adapt to changing conditions, handle system
failures, and optimize work distribution in real-time [4, 5]. This research focuses on the
creation and implementation of decentralized control algorithms, resilient communication
protocols, and adaptive learning techniques. Decentralized control algorithms enable each
drone to make autonomous decisions using local data and interactions with its peers. This
method is similar to that of social insects, in which simple individual norms evolve into
complex and flexible group behavior. Implementing such algorithms allows the drone swarm
to self-organize, distribute duties, and respond to environmental changes without the need
for a central controller [6]. Robust communication protocols are required for swarm cohe-
sion and coordination. These protocols ensure that drones can communicate data despite
communication delays or breakdowns. Integrating peer-to-peer communication and cluster-
ing techniques allows the swarm to strike a compromise between efficiency and endurance.
This hybrid communication architecture enables the dynamic formation of subgroups inside
the swarm, resulting in more efficient task execution and resource allocation [7]. Adaptive
learning techniques broaden the swarm’s potential by allowing drones to learn from their
experiences and improve their performance over time. Machine learning techniques, such as
reinforcement learning and neural networks, can be linked to the automata process, allowing
drones to optimize their activities based on environmental feedback. This continual learning
process enables the swarm to adapt to new problems while improving its overall efficiency
and effectiveness [8]. A self-organizing drone swarm has several potential applications. Drone
swarms can be used in disaster response scenarios to quickly assess damage, find survivors,
and provide crucial supplies. Swarms can collect data across huge areas for environmental
monitoring, providing vital insights into ecosystem health and climate change. In surveil-
lance and security operations, drone swarms may also cover large regions, monitor targets,
and provide real-time situational awareness. The goal of this study is to give a thorough
framework for implementing an automata mechanism in drone swarms while exhibiting the
advantages of decentralized control, robust communication, and adaptive learning. By tack-
ling the problems and opportunities connected with this technology, we hope to pave the
way for future developments in autonomous aerial robotics and open up new avenues for a
variety of applications.

2. Self-Organized Systems and Gossiping Algorithms

Self-organization, also called spontaneous order in the social sciences, is a process where some
form of overall order arises from local interactions between parts of an initially disordered
system [9]. The process can be spontaneous when sufficient energy is available without out-
side control. Self-organization is often triggered by seemingly random fluctuations amplified
by positive feedback. Self-organization is wholly decentralized and distributed over all the
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components of the entire system. As such, the organization is typically robust and able to
survive or to self-repair from substantial perturbations. A narrower, still much closed concept
related to self-organization is the phenomenon of self-ordering of systems. Complex dynamic
systems are often self-organizing, and depending on the specified leading groups of proper-
ties, they are also called self-regulating, self-adjusting, self-learning, or self-algorithmizable
systems. The Abelian sandpile model is the simplest and analytically tractable model of
self-organized criticality [10]. In [11], a detailed overview of the known results about height
probabilities and special correlation functions of the model is presented. In parallel, the
research also focuses on the rotor-router model [12], where a one-to-one correspondence be-
tween the defined recurrent states and the graph spanning trees is observed. The rotor
mechanism, first proposed in the theory of self-organized criticality under the name Eulerian
walk, was rediscovered independently as a tool for the de-randomization of the random walk
[13]. The dynamics of the rotor-router walk can be modeled over a square lattice with arrows
attached to the sites, where arrows are directed toward one of the neighbors. A particle (a
chip) performs a walk, jumping from a site to a neighboring site. Arriving at a given site,
the particle changes the direction of the arrow at that site in a prescribed order and moves
toward the neighbor pointed out by the new position of the arrow. Obviously, given an initial
orientation of arrows on the whole lattice, the rotor-router walk is deterministic. The walk
starting from uniformly distributed random initial configurations is called a uniform rotor
walk. If the lattice is finite, the walk starting from an arbitrary site settles into an Eulerian
circuit where each edge of the lattice is visited exactly once in every direction. When the
walker is on the Eulerian circuit, the configurations of rotors associated with each site are
recurrent. Graphically, the recurrent configuration representation is a unicycle. This is a
specific state where the arrows form a spanning set of directed edges containing a unique
directed cycle to which the particle belongs. Correlation between the Abelian sandpiles, Eu-
ler circuits and the rotor-router model is a subject to a rigorous mathematical survey [14].
The essential idea highlighted in the survey is the consideration of the rotor-routing action
of the sandpile group on spanning trees in parallel with rotor-routing on unicycles. The
rotor-router walk started from an arbitrary rotor configuration on a finite sink-free directed
graph G, enters into an Euler circuit (Euler tour) and remains there forever (Fig. 1) after a
finite number of steps.

In [13], the following property is proved: if at some moment, the rotors form a closed
clockwise contour on the planar graph, then the clockwise rotations of rotors generate a walk
which enters into the contour at some vertex, performs a number of steps inside the contour
so that the contour formed by rotors becomes anti-clockwise, and then leaves the contour at
the same vertex. This property generalizes the previously proved theorem for the case when
the rotor configuration inside the contour forms a cycle-rooted spanning tree, and all rotors
inside the contour perform a full rotation. We use this proven property for an analysis of
the sub-diffusive behavior of the rotor-router walk. The suggested swarm algorithms and
models have been designed based on the obtained results of the authors given below. The
distinguishing characteristic of our approach against the existing solutions is that it meets
all the classical requirements imposed on self-organizing systems, whereas the existing im-
plementations each addresses the swarm construction and management specifically. Based
on the analysis of available solutions and to best meet the requirements for UAV swarms
construction, an optimally distributed software-hardware cloud system is suggested to man-
age self-organizing UAV swarms with the below mentioned capabilities. UAVs are loaded
with basic schemes for information exchange. The development of decentralized and self-
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Fig. 1. Cycle erasing illustration

organizing swarms of logically linked UAVs involved the design of optimal and fault-tolerant
schemes (gossip/broadcast models). This enabled performing dynamic snapshotting and full
exchange of captured images of the surveyed areas during the swarm quasi-random walk
(rotor-router model). Essential definitions, concepts, and mathematical models of the con-
struction are given below [15]. The gossip problem is formulated as follows: each of the
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participants within the group possesses distinct information. The goal is to distribute all
the messages among all participants via phone calls. The minimum number of required calls
is well-known: 7 = 2n — 4, n > 4. This problem can be modeled as a weighted graph, with
vertices representing participants and edges representing the times at which peer communi-
cations occur. Unlike the existing methods, our approach enables communication between
any two vertices (peers) to happen instantaneously, requiring only a single time tick. The
utilization of k-fault-tolerant gossip graphs allows for the extension of the gossip problem
to accommodate up to k arbitrary call failures. It is noteworthy that in the event of a call
failure, no information exchange takes place. Subsequently, the subsequent objective was
to determine the minimum number of calls required to achieve k-fault tolerance among n
participants, denoted as 7(n, k), which remains an unresolved challenge. Presently, there
exist only upper or lower bounds for

k
T(n, k) < L log, n + ne (1)
2 2
for n being a power of 2, and
k—1
(n, k) < 2n[loggn] +n[* 1) ®

otherwise [16].

Definition 1. A Knddel graph with n > 2 the vertices (n is even) and 1 < A < |logan|
degrees is denoted by Wa n, where vertices are pairs of type (i,7),i = 1,2;0 < j < & — 1.
For each of j and 1,0 <j <8 —1,1=1,..,A, there exists an edge weighted | between (1, j)
and (2, j + 2l — 1 — 1mod%) nodes.

3. Implementation of an Automata System Using Cloud Infrastructure and
Physical Drones

This section discusses the automata environment provided by the platform, including dy-
namic scenarios and environmental variables (see Fig. 2).

3.1 Generate requests from QT

The Applications collection is produced utilizing the C++/QT library and Flask APIs. So,
everything manages the toolset utilizing the QT environment. This section explains how
to create requests from the QT environment to power the platform’s functionality. An
active server is required to start the preparation platform, and programs must automatically
establish connections. Users upload location images to the server, which displays an input
window displaying a map based on the image’s coordinates. While users enter the appropriate
coordinates, the system computes the real-world coordinates for each pixel, ensuring accuracy
while configuring the simulation environment. The QT service layer protects against attacks
by utilizing strong encryption while sending data to virtual servers in the cloud architecture
over secure Internet TCP protocol communication channels. The drone map/automata
graph module allows users to construct and manage maps for drone swarm navigation and
task management. The JSON structure of all queries ensures that the platform and the
QT environment communicate effectively and transparently. Users design a flight operation
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network for the drone swarm using the computed absolute coordinates of the pixels in the
landscape image. The classification of vertices into Corner, Side Border, and Inner types
facilitate precise drone operations planning. After that, users enter the drone’s IP port
to commence communication and select specific side vertices for drone installation. When
the return router method completes any network cycles, the system generates coordinates
and navigation data, which are then sent to the drone ground station. With the correct
coordinates, the drones can travel the network without assistance from a person. Users
can indicate target locations for drone strikes on a terrain image using internal geographic
coordinates. Users can adjust the default network topology as needed. All changes are
logged in a detailed log, which immediately alerts the cloud server and ensures that all
users’ graphical interfaces are consistent.

3.2 Cloud Infrastructure

The development of a cloud-based platform for mission preparation for self-organizing drone
swarms using multi-agent systems, such as sandpile models, rotor-router models, and opti-
mal gossip broadcast schemes, represents a significant innovation in the domain of logically
interconnected and decentralized intelligent networks (see Fig 2.).
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Fig. 2. Cloud infrastructure

The development of software toolsets for managing self-organizing drone swarms is both
difficult and costly. As a result, combining virtual environments, cloud technologies, and
computational resources into a single platform provides realistic solutions to these issues.
The proposed platform seeks to enable autonomous mission execution across a wide range
of activities and scenarios while lowering the time and cost associated with drone swarm
missions. Our proposed and validated solutions for building high-performance computing
infrastructures serve as the foundation for the design and implementation of this cloud plat-
form, which adheres to modern standards and includes Al-powered collection, categoriza-
tion, and processing of massive data, improved electronic infrastructure energy usage and
cloud computing settings, efficient use of HPC resources for linear algebra computations,
and cloud service disposal. Cloud computing has substantially improved the efficiency of
image-processing for drones by leveraging scalable computer resources and large amounts
of storage. Our proposed and validated solutions for building high-performance comput-
ing infrastructures serve as the foundation for the design and implementation of this cloud
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platform, which adheres to modern standards and includes Al-powered collection, catego-
rization, and processing of massive data, improved electronic infrastructure energy usage and
cloud computing settings, efficient use of HPC resources for linear algebra computations, and
cloud service disposal. Cloud computing has substantially improved the efficiency of UAV
image-processing processes by leveraging scalable computer resources and large amounts of
storage. Our strategy makes use of a serverless cloud platform for high-performance comput-
ing (HPC), which has been precisely engineered to properly handle the drone swarm’s HPC
workloads, guaranteeing that swarm operations are completed on time. A server execution
environment is created within the cloud architecture, with one server dedicated to swarm or
single-drone flying operations. This server’s IP address is documented in a functional log file
that users can access via a graphical user interface. Each server is assigned a specific task,
which involves initiating data processing and ensuring that results are visible and synced.
This architecture facilitates the dispersed and efficient execution of drone flying operations
and data processing.

4. Conclusion

This study effectively demonstrated the use of an automata mechanism to improve a drone
swarm’s self-organizing capabilities. The swarm functions efficiently and adapts to changing
situations without central control by utilizing decentralized control algorithms, strong com-
munication protocols, and adaptive learning processes. The use of cloud services enhances
these capabilities by providing scalable computer resources and real-time data processing.
Cloud-based infrastructure improves swarm communication and coordination, enabling more
efficient information sharing and dynamic work allocation. The experimental results indicate
considerable gains in task performance, resource utilization, and adaptability, demonstrating
the system’s usefulness in a variety of applications such as disaster response, environmental
monitoring, and surveillance. Finally, the synergy between automata mechanisms and cloud
services provides a solid foundation for future advances in autonomous drone swarms, paving
the way for novel solutions in complex and dynamic circumstances.
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AnHoTanuys

TexXHOAOTHA APOHOB IIO3BOAVIAA AOOUTHCS 3HAUMTEABHBIX YCIIEXOB B @BTOHOMHBIX
CHCTEMAaxX, B YaCTHOCTH B pPOEBOU POOOTOTEXHUKe. B 3TOM cTaThe IpepCTaBA€HA
HOBas TEXHOAOTHMS aBTOMATHU3alli{, HallpaBA€HHAas Ha MOBBIIIeHUE 3(P(PEKTUBHOCTH,
QAANITUBHOCT W HAAEKHOCTH CAMOOPraHM3YIOIINXCA POEB APOHOB. Cucrema
HUCIOAB3YeT AElleHTPAAu30BaHHBIE AATOPUTMEI VIIPABAEHUS U HaAEKHBIE ITPOTOKOABI
CBS3U A OOecliedeHUs aAQIlITUBHOTO OOYUYeHUS U IPUHATHS PELIeHUU B PearbHOM
BpeMEHU CpeAu APOHOB. KaXpblil ApPOH AEUCTByeT KaK aBTOHOMHBIM areHT,
KOPPEKTUPYS CBOE IIOBEAEHWE Ha OCHOBE BXOAHBIX AAHHBIX OKPY’KAIOIIEU CpeAbl
1 B3aUMOAEMCTBUSA C APYTMMH ApPOHaMM. ['HMOpuaAHAs MOAEAb CBS3H, COYeTAroIas
OAHOPAHTOBBIE M KAQCTEPHBIE IIPOTOKOABI, oOOecneuuBaeT HPPEKTUBHBIM OOMeH
nH(popMaue ® KOOPAMHAIMIO. AAS CO3AQHHA MacCIITaOMPyeMOM M YCTOMYUBOU
APXUTEKTYpPbl TEOpPUS MHOTOAreHTHBIX CHCTEM WHTErPUPOBAHA C IE€PEeAOBBIMU
CTpaTerusiIMM CaMOOPTaHU3AIUU. OOmupHOEe MOAEAWPOBAaHME U TECTUPOBaHUE
B PEAAbHBIX YCAOBHUSAX OIEHWBAAM IIPOU3BOAUTEABHOCTH CHUCTEM B CAOKHBIX
CIleHapHusAX, TaKMWX KaK pearupoBaHWEe HA CTUXHMHBIE OEACTBUS, MOHUTOPUHT
OKpYy’KarlIlel CpeAbl U HaOAOpAeHUWe. Pe3yabpTaThl AeMOHCTPUPYIOT 3HAUUTEABHBIE
yAyullleHud 3(PPEeKTUBHOCTH pOSA, YCTOUYUBOCTH K COOSAM M QAANTUBHOCTH K

AMHaMUUECKUM CpepaM.  BRAIOUeHMe aAaNTUBHBIX aATOPUTMOB OOYUYEHUS elle
OOABIIIE ONTUMHU3HMPOBAAO paclIpeAeAeHNe U BBIIOAHEHHEe 3aAad B pPearbHOM
BpPEMEHH. OTta paboTa TpeACTaBAsIeT COOOM CYIeCTBEHHBIM IIporpecc B

aBTOHOMHOM BO3AYIIHOM pOOOTOTEXHUKE, IIpeprarad KOMIIAEKCHYIO CTPYKTYPY
MM Pa3BepTHIBAHUS WHTEAAEKTYaAbHBIX, CaMOOPTaHM3YIOIIUXCS POEB APOHOB U
IIOAYEpKUBas INpeo0pasyoIui IOTeHIMaA IIOAXOAOB Ha OCHOBe aBTOMATOB B
OYAYIIIUX aBTOHOMHBEIX CHCTEMaX.

KaroueBble CAOBa: poOM APOHOB, aBTOMAThl, CaMOOPraHU3YIOMIAACS CHUCTEMQ,
MaTeMaTU4eCKUe MOAEAN.
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Abstract

Root-mean-square deviation (RMSD) is a crucial metric for quantifying molecular
structure similarity. However, the associated combinatorial challenges complicate the
calculation process when dealing with highly symmetric molecules. Although several open-
source tools have been developed to perform symmetry-corrected RMSD computations,
each has limitations in terms of speed, accuracy, or usability. In this paper, we introduce
FlashRMSD, a novel, rapid approach for symmetry-corrected RMSD calculation. In
addition, we present an extensive benchmark dataset to evaluate RMSD calculation tools
and provide a comparative analysis of existing methods alongside our proposed tool.
Keywords: Symmetry corrected RMSD, FlashRMSD, Molecular docking, Backtracking.
Article info: Received 30 March 2024; sent for review 1 April 2025; accepted 2 May 2025.

1. Introduction

Root Mean Square Deviation (RMSD) is a cornerstone metric in computational chemistry, widely
employed to measure the similarity between molecular conformations. It is pivotal in applications
such as assessing docking outcomes, guiding lead optimization, and filtering large sets of
candidate structures in high-throughput screening. However, RMSD calculations become
problematic when molecules exhibit symmetry—such as repeated functional groups or identical
substituents—because standard atom-to-atom mappings often ignore these chemical equivalences.
This oversight can produce inflated RMSD values and hinder accurate comparisons.
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Several open-source tools attempt to address these symmetry-related challenges, but each
exhibits notable constraints in terms of computational efficiency. Moreover, the field currently
lacks a standardized dataset that captures the full breadth of symmetrical molecular structures.
This absence complicates the fair evaluation of different RMSD methods, as it is challenging to
determine whether the observed failures originate from the algorithms themselves or from
insufficient testing.

Our previous studies [1] demonstrated that while existing RMSD tools can effectively process
highly symmetrical structures, they often struggle with certain specific molecular configurations
that are overlooked during benchmarking. These structural cases, left unexamined in typical tool
evaluations, highlight gaps in current methodologies and the need for more comprehensive
benchmarking datasets.

To address these challenges, we make two key contributions in this work:

1..0Comprehensive Dataset — We curate a dataset designed to challenge RMSD tools by
incorporating molecules with diverse and tricky symmetry patterns that can mislead certain
tools into unnecessary computations. By spanning a broad range of molecular scaffolds,
this dataset provides a rigorous benchmark for evaluating both existing and novel methods.

2. 1FlashRMSD: A Symmetry-Corrected RMSD Tool — We introduce FlashRMSD, an
efficient approach for symmetry-aware RMSD calculation. Our method leverages an
optimized backtracking algorithm with pruning strategies to account for chemical
equivalences, ensuring both accuracy and computational efficiency.

The remainder of this paper is structured as follows. First, in Section 2, we describe the
construction and scope of our new dataset. Section 3 then introduces the FlashRMSD tool,
detailing its theoretical background and practical implementation. Next, in Section 4, we outline
the benchmark setup used to evaluate FlashRMSD alongside other RMSD calculation tools.
Finally, Section 5 presents our comparative results, and Section 6 discusses edge cases of
molecules that are challenging for some or all RMSD calculation tools.

1.1. Background and Related Work

1.1.1 RMSD and Symmetry Challenges

RMSD quantifies the structural similarity between two molecular conformations by measuring the
root mean squared distance between corresponding atoms. While seemingly straightforward,
RMSD calculations can be undermined by molecular symmetry. In symmetrical molecules,
multiple valid atom mappings exist, and failing to account for all chemically equivalent
correspondences can lead to erroneous or inflated RMSD values. These inaccuracies can influence
the results of tasks like molecular docking, virtual screening, and structure-based drug design,
where having reliable similarity metrics is crucial.
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1.1.2 Existing RMSD Tools

Several RMSD tools have been developed, each tackling different aspects of the problem with
varying degrees of effectiveness:

o1 SpyRMSD[2]:
Designed for flexibility and ease of use, spyRMSD integrates with popular libraries such
as RDKit and Open Babel, leveraging Python for accessibility. However, its reliance on
libraries for graph isomorphism calculations lacks problem-specific optimizations, making
it highly inefficient. Additionally, it offers limited support for bond-type variations.

o1 DockRMSDI3]:
Optimized for computational efficiency, DockRMSD is implemented in C, allowing for
rapid calculations with minimal overhead. However, its functionality is restricted to
specific MOL2 file formats, and it may fail silently (e.g., via segmentation faults) when
encountering format inconsistencies or complex symmetries. While it does account for
bond types, it silently ignores them if no valid mappings are found.

e[ Oobrms:
As part of the OpenBabel[4] cheminformatics toolkit, obrms supports multiple file formats
and cross-RMSD calculations. While it is both efficient and versatile, its packaging
introduces some overhead, making it slightly less efficient than DockRMSD.

Collectively, these tools highlight a common limitation: while each addresses specific user needs,
none effectively balances speed, reliability, and robust handling of symmetrical equivalences.
Furthermore, the absence of a comprehensive, standardized dataset encompassing diverse
symmetrical structures makes it challenging to objectively evaluate their strengths and
weaknesses.

1.1.3 Motivating a New Dataset

In the absence of a dedicated dataset that systematically tests RMSD performance on symmetrical
structures, evaluations often rely on ad hoc collections of molecules or focus on only a few specific
chemotypes. This approach fails to capture the breadth of symmetry types encountered in real-
world applications, ranging from simple ring systems to large, multiply substituted scaffolds.

By presenting a new dataset that features a wide range of symmetrical patterns, we aim to provide
a benchmark that can reveal subtle performance gaps in existing RMSD tools. This resource will
also serve as the testing ground for our proposed FlashRMSD tool, enabling transparent
comparisons and guiding future improvements in symmetry-corrected RMSD algorithms.

2. Dataset

Our dataset was constructed using molecules from two primary sources: the Chemical
Component Dictionary (CCD)![5] and the Biologically Interesting Molecule Reference

1 https://www.wwpdb.org/data/ccd
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Dictionary (BIRD)?, both obtained from the RCSB Protein Data Bank (PDB). As of February
2024, the CCD dataset contained 45,622 molecules, primarily small organic compounds
commonly found in macromolecular crystallography, while the BIRD dataset contained 819
molecules, representing biologically relevant non-polymeric entities. These datasets were selected
for their structural diversity and derivation from real protein-ligand systems. They include a
number of challenging symmetric or pseudo-symmetric structures, which we analyze in detail
through specific case studies in Section 6.

2.1 Data Preprocessing

Since the datasets were originally in different formats, we generated a new conformation for each
entry, saved them in the SDF file format for further processing, and subsequently merged both
datasets.

Initial conformer generation was primarily performed using the EmbedMolecule function of
the RDKit toolkit [6], followed by structural optimization with the MMFF94 force field [7]. RDKit
was chosen due to its efficient 3D embedding algorithm, improved handling of torsional strain,
and its ability to generate high-quality conformers that are more physically realistic. In cases where
RDKit’s conformer generation failed, OpenBabel’s conformer generation was used as a fallback
due to its broader support for certain chemical structures and alternative embedding methods.
Entries for which both tools failed to generate conformers were excluded from the dataset.
Additionally, molecules containing fewer than five heavy atoms were removed to ensure structural
relevance and meaningful molecular modeling.

After preprocessing, the final dataset comprised 45,706 molecules. An overview of the dataset
is provided in Table 1.

Table 1: Overview of Molecule Sources.

Source Molecules Molecules Conformer Generation Tool
Retrieved Retained RDKit Openbabel
CCD 45622 44901 44630 271
BIRD 819 805 755 50
Total 46441 45706 45385 321

2.2 Conformer Generation

To generate realistic 3D conformations of molecules for downstream analysis (see Section 4), we
employed SMINA[8], a fork of AutoDock Vina, using structure-based docking against a protein
target.

The chosen target was HIV-1 protease from PDB entry 1EBY, selected for the following
reasons:

2 hitps://www.wwpdb.org/data/bird
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o1 Symmetrical Dimeric Structure: HIV-1 protease functions as a symmetrical homodimer,
which mirrors the structural symmetry observed in many small molecules, making it a
relevant docking environment.

o1 Large Binding Pocket: The active site is spacious and capable of accommodating a wide
variety of ligand sizes, supporting the diversity of our dataset.

For the docking simulations, default parameters were used with one exception: the
exhaustiveness setting, which determines the thoroughness of the search, was reduced from the
default value of 8 to 4 to obtain results within a reasonable computation time.

For each ligand, up to nine docked conformations were generated and saved in a single SDF
file. These conformations were subsequently used for downstream analyses, including symmetry
evaluation and conformational clustering.

2.3 Final Data Format and Organization

To ensure compatibility with various RMSD calculation tools, including DockRMSD, the dataset
underwent the following formatting and organization steps:

e Conversion to MOL2 Format: All SDF files containing multiple conformations per
molecule were converted to MOL2 format using the obabel tool from Openbabel toolkit,
ensuring broad compatibility with RMSD tools.

o1 Individual Conformation Files: In addition to multi-conformer files, separate files for
each conformation were generated in both SDF and MOL2 formats to facilitate structure-
specific analyses.

The dataset is systematically organized to provide clear accessibility:

o1 Parent Directories: Molecules are categorized based on their source repository:
ol CCD/[MOLECULE_ID]/
o) BIRD/[MOLECULE_ID]/
o1 Per-Molecule Subdirectories: Each molecule is stored in a folder named after its unique
identifier, which contains the following files:
ol all poses.sdf — Multi-conformation file in SDF format.
ol all poses.mol2 — Multi-conformation file in MOL2 format.
ol pose_X.sdf — Individual conformation X in SDF format.
o1 pose_X.mol2 — Individual conformation X in MOL2 format.

This structured approach ensures efficient data retrieval, compatibility with docking validation
tools, and seamless RMSD analysis across different molecular modeling workflows.

2.4 Statistical Analysis of Benchmark Molecules

To better understand the composition and structural diversity of our dataset, we performed a
statistical analysis focusing on problem-related molecular properties like heavy atom count
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distribution, distinct atom types count distribution, and also combinatorial properties like
automorphisms count distribution. The results provide a comprehensive overview of the dataset’s
characteristics, aiding in molecular modeling and cheminformatics applications.

Heavy Atom Count Distribution: As noted earlier, atom count significantly impacts the
computational complexity of molecular comparison tasks. However, hydrogen atoms are typically
omitted in RMSD calculations, making heavy atom count a more relevant metric. In our dataset,
heavy atom counts range from 5 to 244, reflecting a wide range of molecular sizes. The majority
of molecules, however, contain fewer than 50 heavy atoms, indicating a concentration of compact,
chemically meaningful structures (Fig .1).

Log-Scaled Distribution of Heavy Atom Count

10¢ —

Log-Scaled Frequency
35 s

-
by

i ’_HT H_I—H—r\
200 250

0 50 100 150

Heavy Atom Count

Fig. 1. Log-scaled distribution of heavy atom counts across the dataset.

Distinct Atom Types Count Distribution: While not as directly influential as total or heavy atom
counts, the number of distinct atom types in a molecule can affect RMSD calculations by
increasing the number of potential matching groups. In our dataset, this value typically ranges
from 3 to 6, with a maximum of 8 (Fig. 2), reflecting a moderate yet meaningful degree of
elemental diversity. This variation further supports the structural richness and chemical diversity
of the dataset.

Log-Scaled Distribution of Distinct Atom Types Count
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Fig. 2. Log-scaled distribution of distinct atom type counts across the dataset.

Automorphisms Count Distribution: We used the latest version (2.8.9) of the dreadnaut tool
from nauty&Traces [9] toolset to quantify molecular symmetry. Graph representation files were
generated for all molecular structures, which were then processed using dreadnaut to compute
the number of automorphisms for each molecule. The resulting statistics are summarized in Fig.
3. Notably, a large portion of the dataset falls into the <2, 2-5, and 5-10 bins. Molecules with
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moderate symmetry (10-100 automorphisms) form a secondary peak, while highly symmetric
structures (over 1000 automorphisms) are rare.

510 10-100 100-1000 >1000
Number of Automorphisms (Binned|

Fig. 3: Log-scaled distribution of the number of automorphisms across the dataset.

3. FlashRMSD Tool

3.1 Overview

The FlashRMSD tool is designed for efficient and robust symmetry-corrected RMSD calculations,
supporting multiple molecular file formats including SDF, MOL, and MOLZ2, as well as files
containing multiple conformations. It accommodates both standard and advanced use cases
through a comprehensive set of configurable options.

The tool provides several key features:

Naive calculation (-n flag): Runs naive search, by iterating over all permutations of
possible matching atom groups. Can be used for results validation.

Hydrogen inclusion (-h flag): Includes hydrogen atoms in RMSD calculations.

Bond order enforcement (-b flag): Ensures strict bond order matching during atom
mapping, preserving chemical integrity. This deterministic feature distinguishes
FlashRMSD from other tools by enforcing chemically valid matches.

Verbose and assignment output (-v, -a flags): Provides detailed runtime diagnostics and
atom-to-atom assignment outputs for in-depth analysis.

Cross-RMSD calculation (-x flag): Computes pairwise RMSD across all conformations
within a single file, similar to the functionality of obrms.

Multi-query input support: Allows a reference conformation (first structure in a template
file) to be compared against all conformations in a query file, enabling batch comparison
workflows.

3.2 Algorithm

FlashRMSD utilizes a two-stage approach that combines descriptor-based atom featurization with
an optimized backtracking algorithm to achieve symmetry-aware atom mapping.
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Stage 1: Atom Descriptor Generation

Each atom is encoded with a descriptor array created via breadth-first traversal of the molecular
graph starting from that atom as a root. For each traversed atom, its periodic table number and the
distance from the root atom are encoded into a single integer (descriptor) using the formula:

DescriptorEncodedValue = 2'° - distance + PeriodicTableNumber

The resulting descriptor arrays for each atom are sorted and eventually hashed into a single integer.
Hashing is used to avoid costly array comparisons; thus, any consistent function can be used. The
encoding formula ensures that after sorting a descriptor array, descriptors from the same BFS
(Breadth-First Search) layer occupy adjacent positions. This has the same effect as if we kept an
array of descriptor arrays per distance from the root atom. In this way, a sorted descriptor array
effectively encodes all level neighborhood information, and so does its hash. As these values
encode BFS layers’ information, we’ll refer to them as Layer Data.

Although this stage has a complexity of 0(C x N?) (where C is the number of conformations
and N the number of atoms), it lays the groundwork for efficient atom mapping. This approach
becomes particularly advantageous during cross-RMSD calculations. In a standard RMSD
comparison between two conformers, only two featurizations and one RMSD calculation are
required. However, in cross-RMSD mode, the process involves C featurizations followed by
C(C —1)/2 RMSD computations. As the number of conformers increases, the computational load
shifts from featurization to RMSD calculation, highlighting the importance of optimizing the latter.

Here’s an example of how atom descriptors are generated for a single O atom of SO ,

molecule (see Fig. 4).

Fig. 4. SO, molecule, with the sulfur atom shown in yellow and oxygen atoms in red.

During BFS traversal, we’ll visit O atom at distance 0, S atom at distance 1, and 3 more O atoms
at distance 2, thus O atoms descriptor will have the following value:
hash([0 + 8,1024 + 16,2048 + 8,2048 + 8,2048 + 8]) = 1428496640

Stage 2: Atom Mapping via Backtracking

The following algorithm is presented for mapping atoms between a pair of conformations, after
the atom descriptor generation stage is completed for each:

o1 Candidate lists are generated for each atom in the first conformation based on descriptor
matches.
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o1 An optimized backtracking search is performed to determine the best atom-to-atom
mapping, with the following optimization levels:

ol Level 1: Naive backtracking using all candidates.

ol Level 2: Trivial one-to-one matches are resolved and removed before backtracking
to reduce complexity.

ol Level 3 (default): After excluding trivial matches, atoms are grouped into
independent blocks using a Disjoint Set Union (DSU) based on descriptor matches
or bonding. Each block is processed independently, and results are combined for
the final mapping.
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Fig. 5. Flowchart of the FlashRMSD Algorithm.

This flowchart illustrates the two main stages of the FlashRMSD algorithm (see Fig. 5). The first
stage includes the atom featurization, where each atom's descriptor is generated through a breadth-
first traversal and hashed to produce a unique fingerprint, and computation mode determination.
The second stage depicts the pairwise mapping process: candidate list generation based on
matching descriptors, followed by optimizations including trivial mapping exclusion and block
decomposition, and finally, the backtracking procedure used to derive the optimal mapping.

4. Benchmark Setup

While RMSD is defined between two molecular conformations, in practical applications,
especially within automated pipelines, it is usually computed across multiple conformations. For
instance, in docking workflows, multiple binding poses are often generated and must be compared
with each other to identify distinct clusters. This step typically precedes more expensive stages
such as rescoring or molecular dynamics, making early-stage correctness and robustness crucial.
Therefore, a more scalable interface for cross-RMSD calculations is often more important. Tools
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that support efficient, reliable cross-RMSD interfaces better support real-world use cases such as
clustering, redundancy filtering, and structural diversity analysis.

Additionally, when RMSD tools are used repeatedly or integrated into long-running
workflows, even minor issues, such as memory leaks, crashes, or incorrect output, can propagate
and cause significant downstream errors. Therefore, we argue that benchmarking tools on their
cross-RMSD functionality is not only representative of real usage scenarios but also a more
comprehensive test of tool robustness and interface design.

In our benchmarking, we consider two complementary setups:

1.00Cross-RMSD Native Benchmark — Tools are tested on their ability to compute all-pair
RMSD values across a set of poses through their native interface.

2.LJAll-to-All Pairs RMSD Benchmark — Tools are also tested on computing the same
RMSD matrix using repeated two-pose calls to simulate scenarios where no cross-RMSD
interface is available.

Tools will be evaluated along three criteria:

o Reliability: Success rate across tasks, accounting for errors, crashes, indefinitely long
runtime, or invalid outputs.

o1 Correctness: Agreement with reference calculations using naive but accurate RMSD
implementations.

e[ Performance: Execution time, measured only on cases where all tools succeed to ensure
fair comparison.

This setup allows us to assess both the core computational correctness and the practical utility of
RMSD tools in scalable scientific applications.

To ensure a fair and meaningful comparison across tools, we extended the functionality of
DockRMSD in two key ways. First, we modified the tool to support cross-RMSD computation
directly from a single multi-conformer input file. This significantly reduces the number of
redundant pairwise calls and mitigates file 1/0 overhead, aligning DockRMSD’s interface more
closely with tools like obrms and FlashRMSD that natively support cross-RMSD calculations.

Second, we addressed limitations in DockRMSD’s file parsing. The original implementation
only supported a narrow subset of MOL2 files, rejecting valid inputs that deviated from expected
formatting. We revised the file reading logic to accommodate a broader range of MOL2 variants
by relaxing strict constraints and improving parser robustness. These changes eliminate
unnecessary preprocessing steps and ensure compatibility with more diverse datasets, improving
DockRMSD’s utility in real-world workflows.

The resulting extended version, supporting both cross-RMSD input handling and enhanced
MOL2 compatibility, is referred to as DockRMSDEXt in our benchmarks. This ensures that
performance and reliability comparisons across tools reflect differences in computational design,
rather than constraints imposed by tool interfaces or input formatting.
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4.1 Benchmarking Environment and Tools

To ensure fair and reproducible comparison across RMSD calculation tools, all benchmarks were
conducted on a consistent hardware and software environment with the following specifications:

o1 CPU: AMD EPYC 9654 96-Core Processor

o1 RAM: 504 GB DDR4

o1 Operating System: Ubuntu 22.04 LTS (64-bit)

e Storage: NVMe SSD

o1 Python Version: 3.12.9 (used for automation, validation, and timing)

Each benchmarking task was run as a separate process to avoid system-level interference, and
wall-clock times were measured using Python-based orchestration scripts. All tools were tested
using their latest stable versions, compiled with default settings where applicable.

We evaluated the following tools:

o1 Obrms
o1 FlashRMSD (Level 3)
e FlashRMSDNaive
o FlashRMSD tool with naive flag set, iterates over all possible mappings after
layer data matching (Figure 5)
o1 DockRMSD
e DockRMSDEXxt

In this benchmark, we exclude spyRMSD due to its prohibitively slow performance and prior
evidence of inefficiency [1, 2], focusing instead on faster tools for runtime evaluation.

5. Results
5.1 Cross-RMSD Native Benchmark

This benchmark focuses on evaluating each tool’s capability to compute all-to-all RMSD values
across multiple conformations of the same molecule using their native cross-RMSD interfaces,
where available. This use case is central to workflows that require clustering or structural
deduplication prior to downstream analysis or simulation.

As mentioned before, DockRMSD doesn’t provide a native interface for such calculations,
thus, we’ll compare other tools against each other.

For this benchmark, each tool was provided with a single MOL2 file containing multiple
conformations of the same molecule. The expected output was a complete pairwise RMSD matrix
of size N x N, where N is the number of conformations in the input. Only the upper triangular part
(excluding the diagonal) was used for performance analysis, as RMSD matrices are symmetric.
To assess correctness, outputs were compared against results from FlashRMSDNaive, which
performs exhaustive symmetry correction without heuristics. Minor floating-point differences
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were allowed within a predefined tolerance (0.001). Any discrepancies beyond this threshold were
flagged and analyzed.

To prevent excessive runtimes from affecting the benchmark, a per-call timeout of 60 seconds
was set. Any individual RMSD computation that exceeded this limit was recorded as a timeout
failure. However, for naive calculations, the timeout was set to 180 seconds.

Runtime was measured for successful runs only, using wall-clock time recorded externally
via orchestration scripts. This benchmark isolates and evaluates tools specifically on their native
ability to handle structured, multi-conformer input efficiently and correctly.

Out of 45,706 total samples, 45,543 were completed successfully across all tools. For the
remaining 163 samples, only timeout-related failures were encountered—no runtime crashes or
output corruption were observed. We also verified that all outputs from the tools were numerically
identical for the successful cases.

Table 2. Runtime summary of symmetry-corrected RMSD calculation tools on cross-RMSD benchmark
(45,543 samples)

Tool Mean (s) Std (s) Min (s) Max (s)
FlashRMSD 0.0137 0.0099 0.0041 0.4596

FlashRMSDNaive 0.0736 2.3091 0.0074 169.3351
DockRMSDEXxt 0.0510 0.8490 0.0043 55.0944
obrms 0.0571 0.7833 0.0206 47.0439

As shown in Table 2, FlashRMSD outperformed all other tools in terms of runtime, completing
tasks approximately 4 times faster than its nearest competitor on average.

For the 163 samples where one or more tools failed, we analyzed the output of FlashRMSD on
the same cases. Notably, FlashRMSD failed for only 7 samples, all of which also failed in other
tools. For the remaining cases where only other tools failed, FlashRMSD completed successfully,
and its output matched with the succeeding tools.

Table 3. FlashRMSD runtime on samples that failed in other tools.

Failed Tool Number of FlashRMSD runtime report
failures Mean (s) Min (s) Max (s)
FlashRMSDNaive 43 1.8886 0.0064 49.7958
DockRMSDEXxt 118 0.4810 0.0056 49.7958
obrms 36 2.3881 0.0063 49.7958

As seen in Table 3, FlashRMSD handled most of these challenging samples well, maintaining
reasonable runtimes. However, a single outlier pushed its maximum runtime to 49.8 seconds,
which was close to the timeout threshold. This suggests the tool is generally robust, with rare edge
cases that may require monitoring.
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5.2 All-to-All Pairs RMSD Benchmark

This benchmark evaluates the behavior and performance of RMSD calculation tools when used in
pairwise mode, computing RMSD values between all unique pairs of conformations. Unlike the
native cross-RMSD benchmark, this approach requires invoking the tool separately for each pose
pair, simulating the fallback strategy often required by tools that lack native cross-RMSD support.
For a molecule with N conformers, this results in N(N —1)/2 individual RMSD
computations. All tools were orchestrated via automated scripts to execute these comparisons
sequentially, and per-call runtimes were collected. For this benchmark, a timeout of 5 seconds per
call was set; any computation exceeding this limit was considered a timeout failure.
The objectives of this benchmark are threefold:
o1 Toenable adirect comparison with the original DockRMSD, which does not support native
cross-RMSD and must operate in this mode by design.
o To evaluate robustness and failure rates across specific pairwise comparisons, especially
in challenging edge cases.
o1 To identify and showcase individual pose pairs for which certain tools fail, providing
insight into tool stability and error patterns.

All available tools, including those with native cross-RMSD support, were evaluated in this
benchmark to ensure a uniform baseline for comparison. As in the cross-RMSD benchmark,
FlashRMSDNaive was used as the reference for correctness verification.

Out of 45,706 total samples, 42,406 were successfully processed by all tools, including the
original implementation of DockRMSD. However, when excluding DockRMSD, the number of
successful samples increases to 45,558. This discrepancy is due to the file parsing limitations of
the original DockRMSD implementation, as discussed earlier.

On all samples where any two tools produced results, their outputs were in agreement in terms
of correctness. To evaluate whether our modified version—DockRMSDExt—can reliably replace
DockRMSD in broader benchmarks, we compared the two implementations on the 42,406 samples
that both completed successfully.

Table 4. Runtime comparison of DockRMSD and DockRMSDEXxt on all-to-all pairs benchmark

(42,406 samples)
Tool Mean runtime Mean of per- Std over all calls Std of per-
over all calls (s) | sample averages (s) sample averages
(s) (s)
DockRMSD 0.00573 0.00562 0.0439 0.0367
DockRMSDEXt 0.00571 0.00560 0.0442 0.0368

As shown in Table 4, the runtime performance of DockRMSD and DockRMSDEXt is nearly
identical. In fact, the revised version is marginally faster on average. This indicates that the
improvements to file parsing in DockRMSDEXt do not introduce any runtime penalty, validating
its use in place of the original implementation.
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Moreover, the original DockRMSD failed on approximately 7% of the total dataset due to strict
file parsing issues—failures that are fully resolved in DockRMSDEXxt. Therefore, we will use
DockRMSDEXt in all further benchmarks as a reliable and representative version of DockRMSD.
We conducted the same benchmark as in the previous section, with one key difference: we
evaluated both per-call runtimes across all pose pairs and per-sample average runtimes separately
to capture different aspects of tool performance.

Table 5. Runtime summary of symmetry-corrected RMSD calculation tools on all-to-all pairs benchmark

(1,458,326 pairs)
Tool Mean (s) Std (s) Min (s) Max (s)
FlashRMSD 0.00435 0.00176 0.00150 0.06144
FlashRMSDNaive 0.00557 0.06241 0.00164 4.93368
DockRMSDEXt 0.00607 0.04947 0.00170 4.94237
obrms 0.02072 0.02414 0.01431 2.47477

As shown in Table 5, FlashRMSD consistently outperforms other tools in terms of runtime on this
benchmark. Notably, the minimum runtime for obrms is significantly higher than the other tools,
reflecting the inherent overhead associated with being part of a larger, more complex codebase.
A more comprehensive view of runtime distributions across all tools can be seen in Fig. 6,
which presents the box-and-whisker plot of per-call runtimes for all 1,458,326 comparisons.
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Fig. 6. Box and whiskers plot of runtimes of symmetry-corrected RMSD calculation tools
(1,458,326 pairs)
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Table 6. Per-sample average runtime summary of symmetry-corrected RMSD calculation tools on all-to-
all pairs benchmark (45,558 samples)

Tool Mean (s) Std (s) Min (s) Max (s)
FlashRMSD 0.00435 0.00174 0.00162 0.04436
FlashRMSDNaive 0.00544 0.05885 0.00188 4.72553
DockRMSDEXt 0.00593 0.04068 0.00191 3.50721
obrms 0.02063 0.02335 0.01563 2.38896

The results in Table 6 further support the conclusion that FlashRMSD outperforms other tools in
terms of per-sample average runtime. This demonstrates that the complex atom featurization used
in our algorithm, originally introduced to optimize cross-RMSD calculations, does not introduce
any runtime overhead when applied to pairwise RMSD computations. On the contrary,
FlashRMSD remains the most efficient across both benchmark modes.

Finally, there were 148 samples where one or more tools failed during the all-to-all pairwise
benchmark. FlashRMSD failed on the fewest samples — 5 in total and consistent with previous
results, all other tools also failed on those 5 samples.

Table 7. FlashRMSD runtime on pairs that failed in other tools.

Failed Tool Number of Number of FlashRMSD runtime report
failed samples failed pairs Mean (s) Min (s) Max (s)
FlashRMSDNaive 40 1370 0.1530 0.0017 3.7507
DockRMSDEXt 106 2932 0.0656 0.0018 3.7507
obrms 9 324 0.1101 0.0021 2.1288

As shown in Table 7, FlashRMSD handled these challenging samples successfully, maintaining
reasonable runtime performance even in cases where other tools failed.

6. Case Studies

In this section, we’ll dive into benchmark results focusing on interesting molecules discussed in
[1, 3], and also two new challenging examples identified during our current benchmarks.

CCD/PE3, CCD/330

The molecules PE3 and 330, previously discussed in [1], are known to consistently cause failures
in the original DockRMSD implementation. Both structures consist of chains of alternating carbon
and oxygen atoms, creating symmetric topologies that introduce multiple valid atom mappings
during alignment.

These systems are particularly interesting because they expose limitations in tools that rely
heavily on strict atom ordering or lack robust symmetry handling. In both cases, all tested tools,
except for DockRMSD, successfully completed the RMSD calculation within the time limit.
DockRMSD consistently exceeded the 5-second timeout, failing to return results.



96 FlashRMSD: An Effective Approach for Symmetry-Corrected RMSD Calculation with Extensive Benchmark Analysis

Table 8. Comparison of RMSD calculation tools on DockRMSD breaking samples. Per-pair average
runtimes are presented in seconds.

Tool PE3 (per-pair average) (s) 330 (per-pair average) (s)
FlashRMSD 0.00282 0.00615
FlashRMSDNaive 0.00313 0.00563
obrms 0.02026 0.02033

As shown in Table 8, all successful tools returned results in a fraction of a second. The
FlashRMSD and FlashRMSDNaive runtimes are nearly identical, but notably,
FlashRMSDNaive performs slightly faster than the optimized implementation in the case of 330.
This rare case emphasizes that while general optimizations are effective, atom featurization and
initial pruning strategies are critical for performance consistency. Poorly suited heuristics or
inadequate pruning, especially in highly symmetric cases, can lead to exhaustive search behavior
even in otherwise optimized tools.

CCD/60C

Fig. 7. 60C (buckminsterfullerene) molecules 2D (left) and 3D (right) structures.

The molecule 60C (Fig. 7), previously analyzed in [3] for comparison between DockRMSD and
obrms, serves as a valuable case for evaluating tool performance under extreme symmetry. Here,
we extend the analysis by including benchmark results from the FlashRMSD and
FlashRMSDNaive tools.

Structurally, 60C features 12 pentagonal and 20 hexagonal faces arranged in a fullerene-like
topology. A critical detail is that every edge of a pentagonal face is shared with a hexagonal face.
This edge-sharing relationship creates a unique fingerprint for certain bonds; specifically, edges
that bridge a pentagon and a hexagon are uniquely identifiable, as they cannot be matched to bonds
lying solely between two hexagons.

As a result, when attempting to match two conformers of 60C, any mapping that aligns a bond
connecting a pentagon and a hexagon in the template must align with the corresponding bond in
the reference. This significantly constrains the mapping space and leads to 2 X 60 = 120 possible
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mappings — a manageable number, in contrast to estimates in [3]. However, the challenge lies in
efficiently searching and pruning this space.

Despite this manageable mapping space, the FlashRMSDNaive tool failed to compute RMSD
for any pose pairs, highlighting the limitations of exhaustive, non-pruned search methods in
symmetric systems. The other tools, however, successfully completed the calculations and yielded
the following average runtimes:

o1 FlashRMSD: 5.8 ms

o1 DOCkRMSD: 12.3 ms

o1 Obrms: 37.6 ms

These results demonstrate that FlashRMSD outperforms both DockRMSD and obrms, achieving
approximately 2 and 6.5 times better runtimes, respectively. The case of 60C underscores the
importance of efficient pruning and symmetry-aware mapping strategies, even in search spaces
that are theoretically tractable. Without such optimizations, tools can still struggle or fail under the
computational weight of redundant mappings.

BIRD/PRDCC_900031

Fig. 8. PRDCC_900031(heparin pentasaccharide) molecules 2D structure.

The molecule PRDCC_900031 (Fig. 8) serves as a prime example where all key design features
of the FlashRMSD tool contribute directly to performance. At a glance, the molecule appears to
have a symmetric scaffold due to its ring-chain architecture and repetitive SO  {sulfate) or COOH
substituents. However, a closer inspection reveals that the core scaffold is not symmetric: the rings
contain alternating carbon and oxygen atoms in a way that breaks symmetry.

Thanks to its advanced atom featurization, FlashRMSD is able to quickly detect this and
identify a trivial atom mapping, effectively ruling out unnecessary branches during backtracking.
This dramatically improves performance.

The real complexity arises from the nine SO 4and two COOH groups attached to the leaf
atoms of the backbone. Each SO group can be matched in 3! (6) different ways, and each COOH
group can be matched in 2! (2) ways, leading to a theoretical explosion of 226° = 40,310,784
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possible mappings across the entire molecule. While other tools treat this as a flat, unstructured
mapping problem, FlashRMSD’s level-3 optimization decomposes the problem: each
symmetrical group mentioned above is treated as an independent subtree, allowing mappings to
be computed separately and then combined. This reduces the mapping search space from 226° to
just 2 X 2 4+ 9 x 6 = 58 evaluations, a drastic and principled reduction.

All other tools failed to compute cross-RMSD in a reasonable time. FlashRMSDNaive,
despite correctly accounting for symmetry, was forced to iterate through the full 226° mappings,
completing in 46.9 seconds. In contrast, FlashRMSD completed the same calculation in just 8.9
milliseconds, clearly demonstrating the power of intelligent symmetry decomposition.

We also evaluated all-to-all pairwise RMSD performance. DockRMSD succeeded on only 4
out of 36 pairs, while obrms failed on all. This case illustrates that clever partitioning of symmetric
substructures can make the difference between exponential runtime and milliseconds.

CCD/7AZ, CCD/IFWQ

These molecules are special because, independently, they managed to fit into a 5-second window,
but in the cross-RMSD benchmark, the total runtime was bigger than 60 seconds. They both have
a similar structure and represent a special case of symmetries — a big macrocycle with trailing
similar components from macrocycle nodes. These kinds of samples are the subject of
investigation as how they can be effectively analyzed.

Fig. 9. 7AZ (left) and FWQ (right) molecules 2D structures.

Fig. 9 shows that both molecules share a common motif: a large macrocyclic core with branching,
symmetry-repeating fragments extending from multiple macrocycle nodes. These fragments exhibit
local similarity, but are distributed across the molecular structure in ways that significantly increase
the number of potential atom mappings. These examples suggest a new class of test cases that
require new approaches in future RMSD tools.
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7. Conclusions

This work presents FlashRMSD, a symmetry-corrected RMSD calculation tool designed for
accuracy, efficiency, and robustness in both standalone and large-scale automated workflows.
Alongside FlashRMSD, we introduce a comprehensive benchmark dataset comprising thousands
of molecular pose comparisons, specifically structured to evaluate tool performance under realistic
and challenging scenarios.

Through systematic benchmarks, including native cross-RMSD calculations and all-to-all
pairwise comparisons, we demonstrate that FlashRMSD consistently outperforms existing tools
in terms of runtime, reliability, and correctness. It exhibits superior scalability, maintaining low
variance across diverse molecular structures, and handles failure-prone or highly symmetric cases
with resilience. Importantly, the optimizations introduced for cross-RMSD efficiency do not
introduce overhead in simpler pairwise use cases.

Our benchmark suite also highlights structural motifs that pose challenges to current RMSD
tools, such as highly symmetric systems, macrocyclic architectures, and molecules with repetitive
substructures or symmetric side chains. These special cases, analyzed in detail, provide insight
into where existing tools struggle and where future development should focus.

We make both FlashRMSD and the full benchmark dataset publicly available to facilitate
reproducible evaluation and guide future development of RMSD tools. We hope this contribution
will support more reliable and scalable structural comparison workflows in molecular modeling,
docking, and related fields.

Appendix
Data and Code Availability

The benchmark dataset developed for this study is publicly available via Zenodo at
https://doi.org/10.5281/zenodo.15097621. It includes over 45,000 small molecules from the CCD
and BIRD repositories, complete with multi-conformer and per-pose files, as well as a results.csv
file containing ground truth cross-RMSD values.

The source code for the FlashRMSD tool, along with the modified tool DockRMSDEXt, is
available on GitHub at https://github.com/altunyanv/FlashRMSD. Both the dataset and the code
are released under open-source licenses to facilitate reproducibility and further development in
symmetry-corrected RMSD calculations.
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htw: Uju hnpudmd dkup tkpluyugimd bip FlashRMSD qnpshpp tnp, wpug b
wpnnibuybn Uninkgnid uhdbknphwyny &ogpunjus RMSD hwpduplyh hwdwp: Fugh
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FlashRMSD: ¢ dexTuBHbIi moaxoa k BeruuciaeHuo RMSD ¢
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Baaru H. Antynsin
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AHHOTALIMA

RMSD sBnsieTrcss BaKHBIM TIOKa3aTejeM JJI OIEHKH CXOACTBA MOJICKYJISIPHBIX CTPYKTYD.
OpHako mpu paboTe C CHWIBHO CHMMETPHYHBIMH MOJICKYJaMH BO3HHMKAIOT KOMOHMHATOPHBIC
CJIO’KHOCTH, KOTOPBIE 3aTPYIHSIOT MPOIECC BEIYUCICHUN. XOTs CYIIECTBYET Psii MHCTPYMEHTOB C
OTKPBITBIM HUCXOAHBIM KOJOM ijIsi Bbrauciaenus RMSD ¢ yderoM cuMMeTpuu, KaKAbIH W3 HHUX
UMEET OTPaHHUYEHUS 110 CKOPOCTH, TOYHOCTHU WIIN yI00CTBY UCMONB30BaHMs. B TaHHOM cTaThe Mbl
npencrasisieM FlasShRMSD — noBbiit, ObicTphiii 1 3ddexTrBHbI MeTo ] BhraucieHuss RMSD c
Y4ETOM CUMMETpHH. TakKe MBI TIPEACTaBISIEM OOUIMPHBIA HAOOP MOJECKYISPHBIX CTPYKTYP LIS
OIICHKH HHCTPYMEHTOB BbrurciieHnss RMSD u npoBouM cCpaBHUTENBHBIN aHATN3 CYIIECTBYIOIINX
METOJIOB C HAIIIUM PEIICHUEM.

Kawueblie cioBa: RMSD ¢ koppekiueii cummerpun, FlashRMSD, monekymspHbIi JOKHHT.
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